
Complexification

Now that we’ve worked a bit with complex numbers, we might take advantage of the fact that often, rather
than dealing with sin(x) and cos(x), it might be a lot easier to work with the complex exponential function.

In things like integration and as a forcing function for the linear DE, it is especially convenient. For
example, if we have a linear operator and we need to apply it to cos(ωt), why not apply it to the exponential
function instead?

Here’s a specific example so we can see what’s going on. Suppose we want to integrate cos(t) (which is
a linear operation):∫

cos(t) dt ⇒
∫

cos(t) dt+ i

∫
sin(t) dt =

∫
cos(t) + i sin(t) dt =

∫
eit dt = ieit

We don’t want the whole integral, however, only
∫

cos(t) dt, which is the real part of our answer. To find
the real part, expand it first:

ieit = i(cos(t) + i sin(t)) = − sin(t) + i cos(t)

Therefore, the real part is − sin(t), as expected.
Here’s another example, where we complexify the problem by putting the sine or cosine into the complex

exponential. ∫
et sin(2t) dt ⇒

∫
et(cos(2t) + i sin(2t)) dt =

∫
e(1+2i)t dt =

1

1 + 2i
e(1+2i)t

In this case, we want the imaginary part of the answer only, so we expand the expression:

1

1 + 2i
et(cos(2t) + i sin(2t)) = et

(
1

5
− i2

5

)
(cos(2t) + i sin(2t))

You might check to see that the imaginary part is given below:∫
et sin(2t) dt = −2

5
et cos(2t) +

1

5
et sin(2t)

Similarly, we can replace the sine or cosine forcing function in a differential equation by using the complex
exponential. We might find the algebra easier to navigate. Let’s see how that would work.

Example 1

Find the particular solution to the differential equation:

y′′ + 2y′ + y = cos(3t)

SOLUTION: Rather than solve this problem, we will complexify the right hand side:

y′′ + 2y′ + y = cos(3t) + i sin(3t) = e3it

We’ll continue as if this is a regular exponential, and use Method of Undetermined Coefficients:

yp = Ae3it y′p = 3iAe3it y′′p = −9Ae3it.

Substituting into the DE, we get:

Ae3it(−9 + 2(3i) + 1) = e3it ⇒ A =
1

−8 + 6i
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The ansatz was yp = Ae3it, so let’s actually expand that to see what it is:

1

−8 + 6i
e3it =

1

−8 + 6i
(cos(3t) + i sin(3t)) =

−4− 3i

50
(cos(3t) + i sin(3t)) =

(
− 4

50
cos(3t) +

3

50
sin(3t)

)
+ i

(
− 3

50
cos(3t)− 4

50
sin(3t)

)
Note that we did not actually need to compute the entire answer, only the real part because cos(3t) is the
real part of the exponential. Now, the solution is:

yp = Real(Ae3it) = − 4

50
cos(3t) +

3

50
sin(3t)

Let’s take this one step further and write the result as R cos(ωt− δ):

R =

√
(−4)2 + 32

502
=

√
25

502
=

1

10
, tan(δ) =

3/50

−4/50
=

6

−8

We might make the observation that, using the original constant A:

1

| − 8 + 6i|
=

1√
64 + 36

=
1

10
= R, and δ = arg(−8 + 6i)

so that the R, δ may be computed directly from the constant A rather than multiplying out the solution. If
we have a sine on the RHS, then we either need a slightly different formula, or we can multiply Aeωit out
(we’ll do this in Example 3 below).

Example 2

Write the particular part of the solution as R cos(ωt− δ), if y′′ + y′ − 2y = cos(2t).

SOLUTION: We’ll rewrite it first:

y′′ + y′ − 2y = cos(2t) + i sin(2t) = e2it

The ansatz and its derivatives are computed:

yp = Ae2it y′p = 2iAe2it y′′p = −4Ae2it

Putting these into the DE and solve for A:

Ae2it (−4 + 2i− 2(1)) = e2it ⇒ A =
1

−6 + 2i

Now,

R =
1

| − 6 + 2i|
=

1√
36 + 4

=
1√
40
, δ = Tan−1(2/− 6) = tan−1(1/3) + π

The particular solution is:

yp(t) =
1

2
√

10
cos
(
2t− (tan−1(1/3) + π)

)
This was a lot faster than taking yp = A cos(2t) +B sin(2t)...
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Example 3

Solve: y′′ + 2y′ + y = sin(3t)
In this case, we would use exactly the same technique as before, but we go after the imaginary part of

the solution at the end. That is, we:

• Replace sin(3t) by e3it

• Use yp = Ae3it.

• Take the imaginary part of yp as the solution.

And we can see what our solution is:

yp = − 3

50
cos(3t)− 4

50
sin(3t)

Example 4

Solve: y′′ + 9y = sin(3t).
If we were to do this using sine and cosine, we would have to guess:

yp = t(A cos(3t) +B sin(3t))

But wouldn’t it be a bit easier to solve using the complex exponential? In that case, we solve the following,
again noting that the homogeneous part of the solution is

yh = C1 cos(3t) + C2 sin(3t)

We re-write the ODE as:
y′′ + 9y = e3it

And take the following as our ansatz (multiplied by t). Recall that we’ll actually only need the imaginary
part of yp:

yp = Ate3it y′p = Ae3it + 3iAte3it y′′p = 6iAe3it − 9Ate3it

Now,
y′′p + 9yp = 6iAe3it ⇒ 6iAe3it = e3it.

From this, we see that:

A =
1

6i
= −1

6
i

As before, we want the imaginary part of Ae3it, which in this case will be:

yp = Imag(Ate3it) = Imag

(
− t

6
i(cos(3t) + i sin(3t)

)
=
t

6
sin(3t)

Shortcut Summary for Cosine Forcing Functions

Suppose we have the DE:
y′′ + py′ + qy = cos(ωt)

where we assume p, q are real numbers. If we use our shortcut assumption, we can solve for the constant A
coming from the Method of Undetermined Coefficients:

yp = Aeiωt ⇒ Aeiωt(−ω2 + iωp+ q) = eiωt
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which leaves us with:

A =
1

(q − ω2) + iωp
=

1

α+ iβ

We will show that, if we write yp = R cos(ωt− δ), then

R =
1

|α+ iβ|
and δ = arg(α+ βi) = arctan

(
β

α

)
Proof: Compute the real part:

Real

(
α− βi
α2 + β2

(cos(ωt) + i sin(ωt)

)
=

α

α2 + β2
cos(ωt) +

β

α2 + β2
sin(ωt) = R cos(ωt− δ)

with

R =

√
α2

(α2 + β2)2
+

β2

(α2 + β2)2
=

1√
α2 + β2

=
1

|α+ βi|

And for the phase angle δ, the sum of squares terms cancel out leaving us with the angle for α+ βi, or

δ = arctan

(
β

α

)

Practice:

1. Use the complex exponential to integrate the following:

(a)

∫
e−2t cos(t) dt

(b)

∫
et/2 sin(3t) dt

2. Use the complex exponential to find yp, given:

(a) y′′ + 7y = 3 cos(3t)

(b) y′′ + y′ + 3y = 2 sin(2t)

(c) y′′ + 2y′ + y = cos(2t)

3. Use the complex exponential to find the amplitude and phase angle for the forced response:

y′′ + 2y′ + 2y = cos(t)
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Solutions to the Practice

1. Use the complex exponential to integrate the following:

(a)

∫
e−2t cos(t) dt

SOLUTION: We’ll take the real part of:∫
e−2teit dt =

∫
e(−2+i)t dt =

1

−2 + i
e(−2+i)t

Expanding this,

Real

(
e−2t

(
−2− i

5
(cos(t) + i sin(t)

))
= e−2t

(
−2

5
cos(t) +

1

5
sin(2t)

)
+ C

(b)

∫
et/2 sin(3t) dt

SOLUTION: Same idea as before:∫
et/2e3it dt =

∫
e( 1

2+3i)t dt =
1

1
2 + 3i

e( 1
2+3i)t =

2

1 + 6i
et/2(cos(3t) + i sin(3t))

A little more simplification:

2et/2
(
−1− 6i

37
(cos(3t) + i sin(3t)

)
And we take the imaginary part, so that:∫

et/2 sin(3t) dt = et/2
(
−12

37
cos(3t) +

2

37
sin(3t)

)
+ C

2. Use the complex exponential to find yp, given:

(a) y′′ + 7y = 3 cos(3t)

SOLUTION: The ansatz for y′′ + 7y = 3e3it would be yp = Ae3it (and we’ll keep the real part).
Substitute into the DE and factor out Ae3it:

Ae3it(−9 + 7) = 3e3it ⇒ A =
−3

2

The particular part of the solution is yp = − 3
2 cos(3t).

(b) y′′ + y′ + 3y = 2 sin(2t)

SOLUTION: The ansatz for y′′ + y′ + 3y = 2 sin(2t) is yp = Ae2it (imaginary part). Substitute:

Ae2it(−4 + 2i+ 3) = 2e2it ⇒ A =
2

−1 + 2i

We take the imaginary part of the expression below (the complex number has been rationalized):

−2− 4i

5
(cos(2t) + i sin(2t)) ⇒ yp = −2

5
cos(2t)− 2

5
sin(2t)

(c) Turned in.

3. Turned in.
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