Complexification

Now that we've worked a bit with complex numbers, we might take advantage of the fact that often, rather than dealing with $\sin (x)$ and $\cos (x)$, it might be a lot easier to work with the complex exponential function.

In things like integration and as a forcing function for the linear DE , it is especially convenient. For example, if we have a linear operator and we need to apply it to $\cos (\omega t)$, why not apply it to the exponential function instead?

Here's a specific example so we can see what's going on. Suppose we want to integrate $\cos (t)$ (which is a linear operation):

$$
\int \cos (t) d t \Rightarrow \int \cos (t) d t+i \int \sin (t) d t=\int \cos (t)+i \sin (t) d t=\int \mathrm{e}^{i t} d t=i \mathrm{e}^{i t}
$$

We don't want the whole integral, however, only $\int \cos (t) d t$, which is the real part of our answer. To find the real part, expand it first:

$$
i \mathrm{e}^{i t}=i(\cos (t)+i \sin (t))=-\sin (t)+i \cos (t)
$$

Therefore, the real part is $-\sin (t)$, as expected.
Here's another example, where we complexify the problem by putting the sine or cosine into the complex exponential.

$$
\int \mathrm{e}^{t} \sin (2 t) d t \Rightarrow \int \mathrm{e}^{t}(\cos (2 t)+i \sin (2 t)) d t=\int \mathrm{e}^{(1+2 i) t} d t=\frac{1}{1+2 i} \mathrm{e}^{(1+2 i) t}
$$

In this case, we want the imaginary part of the answer only, so we expand the expression:

$$
\frac{1}{1+2 i} \mathrm{e}^{t}(\cos (2 t)+i \sin (2 t))=\mathrm{e}^{t}\left(\frac{1}{5}-i \frac{2}{5}\right)(\cos (2 t)+i \sin (2 t))
$$

You might check to see that the imaginary part is given below:

$$
\int \mathrm{e}^{t} \sin (2 t) d t=-\frac{2}{5} \mathrm{e}^{t} \cos (2 t)+\frac{1}{5} \mathrm{e}^{t} \sin (2 t)
$$

Similarly, we can replace the sine or cosine forcing function in a differential equation by using the complex exponential. We might find the algebra easier to navigate. Let's see how that would work.

Example 1

Find the particular solution to the differential equation:

$$
y^{\prime \prime}+2 y^{\prime}+y=\cos (3 t)
$$

SOLUTION: Rather than solve this problem, we will complexify the right hand side:

$$
y^{\prime \prime}+2 y^{\prime}+y=\cos (3 t)+i \sin (3 t)=\mathrm{e}^{3 i t}
$$

We'll continue as if this is a regular exponential, and use Method of Undetermined Coefficients:

$$
y_{p}=A \mathrm{e}^{3 i t} \quad y_{p}^{\prime}=3 i A \mathrm{e}^{3 i t} \quad y_{p}^{\prime \prime}=-9 A \mathrm{e}^{3 i t}
$$

Substituting into the DE, we get:

$$
A \mathrm{e}^{3 i t}(-9+2(3 i)+1)=\mathrm{e}^{3 i t} \quad \Rightarrow \quad A=\frac{1}{-8+6 i}
$$

The ansatz was $y_{p}=A \mathrm{e}^{3 i t}$, so let's actually expand that to see what it is:

$$
\begin{gathered}
\frac{1}{-8+6 i} \mathrm{e}^{3 i t}=\frac{1}{-8+6 i}(\cos (3 t)+i \sin (3 t))=\frac{-4-3 i}{50}(\cos (3 t)+i \sin (3 t))= \\
\left(-\frac{4}{50} \cos (3 t)+\frac{3}{50} \sin (3 t)\right)+i\left(-\frac{3}{50} \cos (3 t)-\frac{4}{50} \sin (3 t)\right)
\end{gathered}
$$

Note that we did not actually need to compute the entire answer, only the real part because $\cos (3 t)$ is the real part of the exponential. Now, the solution is:

$$
y_{p}=\operatorname{Real}\left(A \mathrm{e}^{3 i t}\right)=-\frac{4}{50} \cos (3 t)+\frac{3}{50} \sin (3 t)
$$

Let's take this one step further and write the result as $R \cos (\omega t-\delta)$:

$$
R=\sqrt{\frac{(-4)^{2}+3^{2}}{50^{2}}}=\sqrt{\frac{25}{50^{2}}}=\frac{1}{10}, \quad \tan (\delta)=\frac{3 / 50}{-4 / 50}=\frac{6}{-8}
$$

We might make the observation that, using the original constant A :

$$
\frac{1}{|-8+6 i|}=\frac{1}{\sqrt{64+36}}=\frac{1}{10}=R, \quad \text { and } \quad \delta=\arg (-8+6 i)
$$

so that the R, δ may be computed directly from the constant A rather than multiplying out the solution. If we have a sine on the RHS, then we either need a slightly different formula, or we can multiply $A \mathrm{e}^{\omega i t}$ out (we'll do this in Example 3 below).

Example 2

Write the particular part of the solution as $R \cos (\omega t-\delta)$, if $y^{\prime \prime}+y^{\prime}-2 y=\cos (2 t)$.
SOLUTION: We'll rewrite it first:

$$
y^{\prime \prime}+y^{\prime}-2 y=\cos (2 t)+i \sin (2 t)=\mathrm{e}^{2 i t}
$$

The ansatz and its derivatives are computed:

$$
y_{p}=A \mathrm{e}^{2 i t} \quad y_{p}^{\prime}=2 i A \mathrm{e}^{2 i t} \quad y_{p}^{\prime \prime}=-4 A \mathrm{e}^{2 i t}
$$

Putting these into the DE and solve for A :

$$
A \mathrm{e}^{2 i t}(-4+2 i-2(1))=\mathrm{e}^{2 i t} \quad \Rightarrow \quad A=\frac{1}{-6+2 i}
$$

Now,

$$
R=\frac{1}{|-6+2 i|}=\frac{1}{\sqrt{36+4}}=\frac{1}{\sqrt{40}}, \quad \delta=\operatorname{Tan}^{-1}(2 /-6)=\tan ^{-1}(1 / 3)+\pi
$$

The particular solution is:

$$
y_{p}(t)=\frac{1}{2 \sqrt{10}} \cos \left(2 t-\left(\tan ^{-1}(1 / 3)+\pi\right)\right)
$$

This was a lot faster than taking $y_{p}=A \cos (2 t)+B \sin (2 t) \ldots$

Example 3

Solve: $y^{\prime \prime}+2 y^{\prime}+y=\sin (3 t)$
In this case, we would use exactly the same technique as before, but we go after the imaginary part of the solution at the end. That is, we:

- Replace $\sin (3 t)$ by $\mathrm{e}^{3 i t}$
- Use $y_{p}=A \mathrm{e}^{3 i t}$.
- Take the imaginary part of y_{p} as the solution.

And we can see what our solution is:

$$
y_{p}=-\frac{3}{50} \cos (3 t)-\frac{4}{50} \sin (3 t)
$$

Example 4

Solve: $y^{\prime \prime}+9 y=\sin (3 t)$.
If we were to do this using sine and cosine, we would have to guess:

$$
y_{p}=t(A \cos (3 t)+B \sin (3 t))
$$

But wouldn't it be a bit easier to solve using the complex exponential? In that case, we solve the following, again noting that the homogeneous part of the solution is

$$
y_{h}=C_{1} \cos (3 t)+C_{2} \sin (3 t)
$$

We re-write the ODE as:

$$
y^{\prime \prime}+9 y=\mathrm{e}^{3 i t}
$$

And take the following as our ansatz (multiplied by t). Recall that we'll actually only need the imaginary part of y_{p} :

$$
y_{p}=A t \mathrm{e}^{3 i t} \quad y_{p}^{\prime}=A \mathrm{e}^{3 i t}+3 i A t \mathrm{e}^{3 i t} \quad y_{p}^{\prime \prime}=6 i A \mathrm{e}^{3 i t}-9 A t \mathrm{e}^{3 i t}
$$

Now,

$$
y_{p}^{\prime \prime}+9 y_{p}=6 i A \mathrm{e}^{3 i t} \quad \Rightarrow \quad 6 i A \mathrm{e}^{3 i t}=\mathrm{e}^{3 i t} .
$$

From this, we see that:

$$
A=\frac{1}{6 i}=-\frac{1}{6} i
$$

As before, we want the imaginary part of $A e^{3 i t}$, which in this case will be:

$$
y_{p}=\operatorname{Imag}\left(A t \mathrm{e}^{3 i t}\right)=\operatorname{Imag}\left(-\frac{t}{6} i(\cos (3 t)+i \sin (3 t))=\frac{t}{6} \sin (3 t)\right.
$$

Shortcut Summary for Cosine Forcing Functions

Suppose we have the DE:

$$
y^{\prime \prime}+p y^{\prime}+q y=\cos (\omega t)
$$

where we assume p, q are real numbers. If we use our shortcut assumption, we can solve for the constant A coming from the Method of Undetermined Coefficients:

$$
y_{p}=A \mathrm{e}^{i \omega t} \quad \Rightarrow \quad A \mathrm{e}^{i \omega t}\left(-\omega^{2}+i \omega p+q\right)=\mathrm{e}^{i \omega t}
$$

which leaves us with:

$$
A=\frac{1}{\left(q-\omega^{2}\right)+i \omega p}=\frac{1}{\alpha+i \beta}
$$

We will show that, if we write $y_{p}=R \cos (\omega t-\delta)$, then

$$
R=\frac{1}{|\alpha+i \beta|} \quad \text { and } \quad \delta=\arg (\alpha+\beta i)=\arctan \left(\frac{\beta}{\alpha}\right)
$$

Proof: Compute the real part:

$$
\operatorname{Real}\left(\frac{\alpha-\beta i}{\alpha^{2}+\beta^{2}}(\cos (\omega t)+i \sin (\omega t))=\frac{\alpha}{\alpha^{2}+\beta^{2}} \cos (\omega t)+\frac{\beta}{\alpha^{2}+\beta^{2}} \sin (\omega t)=R \cos (\omega t-\delta)\right.
$$

with

$$
R=\sqrt{\frac{\alpha^{2}}{\left(\alpha^{2}+\beta^{2}\right)^{2}}+\frac{\beta^{2}}{\left(\alpha^{2}+\beta^{2}\right)^{2}}}=\frac{1}{\sqrt{\alpha^{2}+\beta^{2}}}=\frac{1}{|\alpha+\beta i|}
$$

And for the phase angle δ, the sum of squares terms cancel out leaving us with the angle for $\alpha+\beta i$, or

$$
\delta=\arctan \left(\frac{\beta}{\alpha}\right)
$$

Practice:

1. Use the complex exponential to integrate the following:
(a) $\int \mathrm{e}^{-2 t} \cos (t) d t$
(b) $\int \mathrm{e}^{t / 2} \sin (3 t) d t$
2. Use the complex exponential to find y_{p}, given:
(a) $y^{\prime \prime}+7 y=3 \cos (3 t)$
(b) $y^{\prime \prime}+y^{\prime}+3 y=2 \sin (2 t)$
(c) $y^{\prime \prime}+2 y^{\prime}+y=\cos (2 t)$
3. Use the complex exponential to find the amplitude and phase angle for the forced response:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\cos (t)
$$

Solutions to the Practice

1. Use the complex exponential to integrate the following:
(a) $\int \mathrm{e}^{-2 t} \cos (t) d t$

SOLUTION: We'll take the real part of:

$$
\int \mathrm{e}^{-2 t} \mathrm{e}^{i t} d t=\int \mathrm{e}^{(-2+i) t} d t=\frac{1}{-2+i} \mathrm{e}^{(-2+i) t}
$$

Expanding this,

$$
\operatorname{Real}\left(\mathrm{e}^{-2 t}\left(\frac{-2-i}{5}(\cos (t)+i \sin (t))\right)=\mathrm{e}^{-2 t}\left(-\frac{2}{5} \cos (t)+\frac{1}{5} \sin (2 t)\right)+C\right.
$$

(b) $\int \mathrm{e}^{t / 2} \sin (3 t) d t$

SOLUTION: Same idea as before:

$$
\int \mathrm{e}^{t / 2} \mathrm{e}^{3 i t} d t=\int \mathrm{e}^{\left(\frac{1}{2}+3 i\right) t} d t=\frac{1}{\frac{1}{2}+3 i} \mathrm{e}^{\left(\frac{1}{2}+3 i\right) t}=\frac{2}{1+6 i} \mathrm{e}^{t / 2}(\cos (3 t)+i \sin (3 t))
$$

A little more simplification:

$$
2 \mathrm{e}^{t / 2}\left(\frac{-1-6 i}{37}(\cos (3 t)+i \sin (3 t))\right.
$$

And we take the imaginary part, so that:

$$
\int \mathrm{e}^{t / 2} \sin (3 t) d t=\mathrm{e}^{t / 2}\left(-\frac{12}{37} \cos (3 t)+\frac{2}{37} \sin (3 t)\right)+C
$$

2. Use the complex exponential to find y_{p}, given:
(a) $y^{\prime \prime}+7 y=3 \cos (3 t)$

SOLUTION: The ansatz for $y^{\prime \prime}+7 y=3 \mathrm{e}^{3 i t}$ would be $y_{p}=A \mathrm{e}^{3 i t}$ (and we'll keep the real part). Substitute into the DE and factor out $A \mathrm{e}^{3 i t}$:

$$
A \mathrm{e}^{3 i t}(-9+7)=3 \mathrm{e}^{3 i t} \quad \Rightarrow \quad A=\frac{-3}{2}
$$

The particular part of the solution is $y_{p}=-\frac{3}{2} \cos (3 t)$.
(b) $y^{\prime \prime}+y^{\prime}+3 y=2 \sin (2 t)$

SOLUTION: The ansatz for $y^{\prime \prime}+y^{\prime}+3 y=2 \sin (2 t)$ is $y_{p}=A \mathrm{e}^{2 i t}$ (imaginary part). Substitute:

$$
A \mathrm{e}^{2 i t}(-4+2 i+3)=2 \mathrm{e}^{2 i t} \quad \Rightarrow \quad A=\frac{2}{-1+2 i}
$$

We take the imaginary part of the expression below (the complex number has been rationalized):

$$
\frac{-2-4 i}{5}(\cos (2 t)+i \sin (2 t)) \Rightarrow y_{p}=-\frac{2}{5} \cos (2 t)-\frac{2}{5} \sin (2 t)
$$

(c) Turned in.
3. Turned in.

