Review questions, Exam 3

1. What is the ansatz we use for y in: Chapter 6 ? Section 5.2 ?
2. Finish the definitions:

- The Heaviside function, $u_{c}(t)$:
- The Dirac δ-function: $\delta(t-c)$ (Note: the Dirac function should be defined as a certain limit)
- Define the convolution: $(f * g)(t)$
- A function is of exponential order if:

3. Use the definition of the Laplace transform to determine $\mathcal{L}(f)$:
(a)

$$
f(t)= \begin{cases}3, & 0 \leq t<2 \\ 6-t, & t \geq 2\end{cases}
$$

(b)

$$
f(t)= \begin{cases}\mathrm{e}^{-t}, & 0 \leq t<5 \\ -1, & t \geq 5\end{cases}
$$

4. Check your answers to Problem 3 by rewriting $f(t)$ using the step (or Heaviside) function, and use the table to compute the corresponding Laplace transform.
5. Show that $f(t)=t^{3}$ is of exponential order. Repeat with $f(t)=\cos (t)$. (HINT: If needed, you may assume that $\ln (t)<t$ for $t>0)$.
6. Write the following functions in piecewise form (thus removing the Heaviside function):
(a) $(t+2) u_{2}(t)+\sin (t) u_{3}(t)-(t+2) u_{4}(t)$
(b) $\sum_{n=1}^{4} u_{n \pi}(t) \sin (t-n \pi)$
7. Determine the Laplace transform, using the table:
(a) $t^{2} \mathrm{e}^{-9 t}$
(d) $\mathrm{e}^{3 t} \sin (4 t)$
(b) $\mathrm{e}^{2 t}-t^{3}-\sin (5 t)$
(e) $\mathrm{e}^{t} \delta(t-3)$
(c) $t^{2} y^{\prime}(t)($ in terms of $Y(s))$
(f) $t^{2} u_{4}(t)$
8. Find the inverse Laplace transform, using the table:
(a) $\frac{2 s-1}{s^{2}-4 s+6}$
(d) $\frac{3 s-1}{2 s^{2}-8 s+14}$
(b) $\frac{7}{(s+3)^{3}}$
(e) $\left(\mathrm{e}^{-2 s}-\mathrm{e}^{-3 s}\right) \frac{1}{s^{2}+s-6}$
(c) $\frac{\mathrm{e}^{-2 s}(4 s+2)}{(s-1)(s+2)}$
9. For the following differential equations, solve for $Y(s)$ (the Laplace transform of the solution, $y(t)$). Do not invert the transform.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=t^{2}+4 t, y(0)=0, y^{\prime}(0)=-1$
(b) $y^{\prime \prime}+9 y=10 \mathrm{e}^{2 t}, y(0)=-1, \quad y^{\prime}(0)=5$
(c) $y^{\prime \prime}-4 y^{\prime}+4 y=t^{2} \mathrm{e}^{t}, y(0)=0, y^{\prime}(0)=0$
10. Solve the given initial value problems using Laplace transforms:
(a) $2 y^{\prime \prime}+y^{\prime}+2 y=\delta(t-5)$, zero initial conditions.
(b) $y^{\prime \prime}+6 y^{\prime}+9 y=0, y(0)=-3, \quad y^{\prime}(0)=10$
(c) $y^{\prime \prime}-2 y^{\prime}-3 y=u_{1}(t), y(0)=0, \quad y^{\prime}(0)=-1$
(d) $y^{\prime \prime}+4 y=\delta\left(t-\frac{\pi}{2}\right), y(0)=0, \quad y^{\prime}(0)=1$
(e) $y^{\prime \prime}+y=\sum_{k=1}^{\infty} \delta(t-2 k \pi), y(0)=y^{\prime}(0)=0$. Write your answer in piecewise form.
11. For the following, use Laplace transforms to solve, and leave your answer in the form of a convolution:
(a) $4 y^{\prime \prime}+4 y^{\prime}+17 y=g(t) \quad y(0)=0, y^{\prime}(0)=0$
(b) $y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=1-u_{\pi}(t)$, with $y(0)=1$ and $y^{\prime}(0)=-1$.
12. Short Answer:
(a) $\int_{0}^{\infty} \sin (3 t) \delta\left(t-\frac{\pi}{2}\right) d t=$ \qquad
(b) Use Laplace transforms to solve the first order DE, thus finding which function has the Dirac function as its derivative:

$$
y^{\prime}(t)=\delta(t-c), \quad y(0)=0
$$

(c) Use Laplace transforms to solve for $F(s)$, if

$$
f(t)+2 \int_{0}^{t} \cos (t-x) f(x) d x=\mathrm{e}^{-t}
$$

(So only solve for the transform of $f(t)$, don't invert it back).
(d) In order for the Laplace transform of f to exist, f must be \qquad
(e) Can we assume that the solution to: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=u_{3}(x)$ is a power series?
(f) Is $x=0$ an ordinary point for the differential equation: $x y^{\prime \prime}+3 x^{2} y^{\prime}+y=4$?
13. Let $f(t)=t$ and $g(t)=u_{2}(t)$.
(a) Use the Laplace transform to compute $f * g$.
(b) Verify your answer by computing $f * g$ using the definition of the convolution.
14. If $a_{0}=1$, determine the coefficients a_{n} so that

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Try to identify the series represented by $\sum_{n=0}^{\infty} a_{n} x^{n}$.
15. Write the following as a single sum in the form $\sum_{k=2}^{\infty} c_{k}(x-1)^{k}$ (with perhaps a few terms in the front):

$$
\sum_{n=1}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+x(x-2) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}
$$

16. Characterize ALL (continuous or not) solutions to

$$
y^{\prime \prime}+4 y=u_{1}(t), \quad y(0)=1, y^{\prime}(0)=1
$$

(Hint: We could have solved this IVP without Laplace transforms. How?)
17. Use the table to find an expression for $\mathcal{L}\left(t y^{\prime}\right)$. Use this to convert the following DE into a linear first order DE in $Y(s)$ (do not solve):

$$
y^{\prime \prime}+3 t y^{\prime}-6 y=1, y(0)=0, y^{\prime}(0)=0
$$

18. Find the recurrence relation between the coefficients for the power series solutions to the following:
(a) $2 y^{\prime \prime}+x y^{\prime}+3 y=0, x_{0}=0$.
(b) $(1-x) y^{\prime \prime}+x y^{\prime}-y=0, x_{0}=0$
(c) $y^{\prime \prime}-x y^{\prime}-y=0, x_{0}=1$
19. Exercises with the table:
(a) Use table for $\sin (a t)$ and $\mathrm{e}^{c t} f(t)$ to prove the formula for $\mathrm{e}^{a t} \sin (b t)$.
(b) Show that you can use table for $(-t)^{n} f(t)$ to find the Laplace transform of $t^{2} \delta(t-3)$ (verify your answer using a property of the δ function).
(c) Prove (using the definition of \mathcal{L}) table entries for $u_{c}(t)$ and $u_{c}(t) f(t-c)$.
(d) Prove (using the definition of \mathcal{L}) a formula (similar to the one for $\left.f^{(n)}(t)\right)$ for $\mathcal{L}\left(y^{\prime \prime \prime}(t)\right)$.
20. Find the first 5 terms of the power series solution to $\mathrm{e}^{x} y^{\prime \prime}+x y=0$ if $y(0)=1$ and $y^{\prime}(0)=-1$.
21. Find the radius of convergence for all of the following, and the interval of convergence for (c) and (d).
(a) $\sum_{n=1}^{\infty} \sqrt{n} x^{n}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n+1}}(x+3)^{n}$
(d) $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 5^{n}}$
