Some Trigonometry and Complexification

The following is a little more explanation of the trig that comes up in Chapter 4.

Amplitude, Period, Phase Shift

Given the function $A \cos (\omega t-\delta)$, the amplitude of the function is A, the period is $2 \pi / \omega$, the frequency is $\omega /(2 \pi)$, the circular frequency is ω, and the phase shift is δ / ω.

So, for example, if we were to graph the function

$$
3 \cos \left(\pi t+\frac{\pi}{2}\right)
$$

the amplitude is 3 , the period is 2 , and the phase shift is $-\frac{1}{2}$, which would translate as "shift to the left by $1 / 4$ of the period". The result:

Cosine Sum Formula

You might recall the cosine sum formula:

$$
\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)
$$

Which in fact is the real part of the complex number:

$$
\cos (x-y)+i \sin (x-y)=\mathrm{e}^{i(x-y)}=\mathrm{e}^{i x} \mathrm{e}^{-i y}=(\cos (x)+i \sin (x))(\cos (-y)+i \sin (-y))
$$

Continuing the RHS, we get:

$$
\mathrm{e}^{i(x-y)}=(\cos (x) \cos (y)+\sin (x) \sin (y))+i(\sin (x) \cos (y)-\sin (y) \cos (x))
$$

The real part gives us the cosine difference formula, and the imaginary part gives us the sine difference formula.

Writing a Trig Sum

Using this, we see that:

$$
R \cos (\omega t-\delta)=(R \cos (\delta)) \cos (\omega t)+(R \sin (\delta)) \sin (\omega t)
$$

This implies that we can write the following sum as a single cosine function:

$$
A \cos (\omega t)+B \sin (\omega t)=R \cos (\omega t-\delta) \quad \Leftrightarrow \quad A=R \cos (\delta) \quad B=R \sin (\delta)
$$

or, given A, B then:

$$
R=\sqrt{A^{2}+B^{2}} \quad \text { and } \quad \delta=\operatorname{Tan}^{-1}\left(\frac{B}{A}\right)
$$

(the inverse tangent is the four quadrant version). As a shortcut to remembering this, let

$$
z=A+i B
$$

then R, δ come from the magnitude and argument of z.

Side Remark: Careful with the parentheses...

If we write the periodic function as $R \cos (\omega(t-\delta))$, then δ itself is the phase shift, but then we don't have the form for the cosine sum formula.

Worked Examples

1. Rewrite the expression as $R \cos (\omega t-\delta)$:

$$
\cos (\sqrt{3} t)+2 \sin (\sqrt{3} t)
$$

SOLUTION: Thinking of the complex number $z=1+2 i$, then $R=\sqrt{1^{2}+2^{2}}=\sqrt{5}$, and

$$
\delta=\tan ^{-1}(2) \approx 1.1 \mathrm{rad}
$$

Therefore,

$$
\cos (\sqrt{3} t)+2 \sin (\sqrt{3} t)=\sqrt{5} \cos (\sqrt{3} t-1.1)
$$

Now it is easy to analyze the sum as a single periodic function- It has an amplitude of $\sqrt{5}$, a period of $2 \pi / \sqrt{3}$, and a phase shift of $1.1 / \sqrt{3}$ radians.
2. Rewrite the expression as a single cosine:

$$
-\cos (3 t)+\sin (3 t)
$$

SOLUTION: Thinking of $z=-1+i$, the magnitude is $\sqrt{2}$ and the inverse tangent gives $-\pi / 4$. BUT, we should notice that our point is actually in the second quadrant, so the argument is actually $\pi-\pi / 4=3 \pi / 4$ (we should use the "four quadrant" inverse tangent).
Therefore, the sum is equal to: $\sqrt{2} \cos \left(3 t-\frac{3 \pi}{4}\right)$.
The amplitude is $\sqrt{2}$, the period is $2 \pi / 3$, and the phase shift is $\pi / 4$.

Exercises

1. Write the expression $3 \cos (5 t)-2 \sin (5 t)$ in the form $R \cos (\omega t-\delta)$.
2. Write the expression $-\cos (2 t)+\sin (2 t)$ in the form $R \cos (\omega t-\delta)$.
3. Write the expression $-\cos (t)-3 \sin (t)$ in the form $R \cos (\omega t-\delta)$.
