L004 Section 6.1 Examples, part 2 notes

In the last video, we looked at inverting transforms using partial fractions. Here we look at when and how to "complete the square" in the denominator.

- Find the inverse Laplace transform:

$$
\frac{2 s+3}{s^{2}+2 s+5}
$$

The denominator is irreducible (for example, $b^{2}-4 a c=2^{2}-4(5)<0$). This is when we want to complete the square:

$$
\frac{2 s+3}{s^{2}+2 s+5}=\frac{2 s+3}{\left(s^{2}+2 s+1\right)+4}=\frac{2 s+3}{(s+1)^{2}+2^{2}}
$$

We need to make this look like the table entries

$$
\frac{s-a}{(s-a)^{2}+b^{2}} \quad \frac{b}{(s-a)^{2}+b^{2}}
$$

so we write:

$$
\frac{2(s+1)+1}{(s+1)^{2}+2^{2}}=2 \frac{s+1}{(s+1)^{2}+2^{2}}+\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}}
$$

Now we can do the inversion:

$$
2 \mathrm{e}^{-t} \cos (2 t)+\frac{1}{2} \mathrm{e}^{-t} \sin (2 t)
$$

- Suppose that we define

$$
Y(s)=\int_{0}^{\infty} \mathrm{e}^{-s t} y(t) d t=\mathcal{L}(y(t))
$$

We want to write $\mathcal{L}\left(y^{\prime}(t)\right)$ in terms of $Y(s)$, if possible.
SOLUTION:

$$
\begin{gathered}
\mathcal{L}\left(y^{\prime}(t)\right) d t=\int_{0}^{\infty} \mathrm{e}^{-s t} y^{\prime}(t) d t \Rightarrow \begin{array}{c|c|c}
+ & \mathrm{e}^{-s t} & y^{\prime}(t) \\
- & -s \mathrm{e}^{-s t} & y(t) \\
& \Rightarrow \\
\left(\left.y(t) \mathrm{e}^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} \mathrm{e}^{-s t} y(t) d t\right.
\end{array}
\end{gathered}
$$

We assume that the limit of $y(t) \mathrm{e}^{-s t}$ is zero (we assume $Y(s)$ exists), so that this expression simplifies to:

$$
\mathcal{L}\left(y^{\prime}(t)\right)=s Y(s)-y(0)
$$

- Similarly, find a formula for $\mathcal{L}\left(y^{\prime \prime}(t)\right)$ in terms of $Y(s)$.

SOLUTION: Almost identical to the previous problem, except the table has another row.

SOLUTION:

$$
\begin{array}{r}
\mathcal{L}\left(y^{\prime \prime}(t)\right) d t=\int_{0}^{\infty} \mathrm{e}^{-s t} y^{\prime \prime}(t) d t \quad \Rightarrow \begin{array}{c|c|c}
+ & \mathrm{e}^{-s t} & y^{\prime \prime}(t) \\
- & -s \mathrm{e}^{-s t} & y^{\prime}(t) \\
& + & s^{2} \mathrm{e}^{-s t} \\
y(t)
\end{array} \quad \Rightarrow \\
\left(y^{\prime}(t) \mathrm{e}^{-s t}+\left.s \mathrm{e}^{-s t} y(t)\right|_{0} ^{\infty}+s^{2} \int_{0}^{\infty} \mathrm{e}^{-s t} y(t) d t\right.
\end{array}
$$

We assume that the limit of the expression is zero (we assume $Y(s)$ and $\mathcal{L}\left(y^{\prime}(t)\right)$ both exist), so that this expression simplifies to:

$$
\mathcal{L}\left(y^{\prime \prime}(t)\right)=s^{2} Y(s)-s y(0)-y^{\prime}(0)
$$

These two expressions are special cases of Table Entry 18 (from the table in the book).

