Last time:

Solve ay'' + by' + cy = 0.

 $b^2 - 4ac > 0$

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

▶ $b^2 - 4ac < 0$, with $r = \alpha + \beta i$

$$y(t) = C_1 \operatorname{Re}(e^{rt}) + C_2 \operatorname{Im}(e^{rt}) = e^{\alpha t} (C_1 \cos(\beta t) + C_2 \sin(\beta t))$$

 $b^2 - 4ac = 0$

$$y(t) = C_1 e^{rt} + C_2 t e^{rt} = e^{rt} (C_1 + C_2 t)$$

Today: How to solve ay'' + by' + cy = f(t)

Notation

The solution to

$$ay'' + by' + cy = 0 \text{ or } L(y) = 0 \implies y_h(t)$$

The solution to

$$ay'' + by' + cy = g(t) \text{ or } L(y) = g(t) \implies y_p(t)$$

Some Theory

To solve L(y) = g(t), the full general solution will be $y(t) = y_h(t) + y_p(t)$.

$$L(y_h(t) + y_p(t)) = L(y_h) + L(y_p) = 0 + g(t) = g(t)$$

► Constants (to solve the IVP) will be in y_h :

$$L(cy_h) = cL(y_h) = 0$$
 $L(cy_p) = cL(y_p) = cg(t) \neq g(t)$

A bit more theory

We solve:

$$L(y) = g_1(t) + g_2(t) + g_3(t) + \cdots + g_n(t)$$

by breaking it up into n different smaller problems:

$$L(y) = 0$$
, $L(y) = g_1(t)$ $L(y) = g_2(t)$ ··· $L(y) = g_n(t)$

So the overall solution will be:

$$y(t) = y_h(t) + y_{p_1}(t) + \cdots + y_{p_n}(t)$$

$$y''-y=t$$

- $y_h(t)$: $r^2 1 = 0 \Rightarrow y_h(t) = C_1 e^{-t} + C_2 e^t$.
- Observation:

The derivative(s) of a polynomial is a polynomial. Guess $y_p(t) = At + B$, and determine A, B.

$$y_p = At + B, y'_p = A, y''_p = 0 \implies 0 - (At + B) = t$$

Therefore, A = -1 and B = 0.

Overall:

$$y(t) = y_h(t) + y_p(t) = C_1 e^{-t} + C_2 e^{t} - t$$

Nice f(t)

Some classes of the forcing function are particularly nice because the derivative of:

- ▶ $P_n(t)$ is another polynomial (deg n-1).
- $ightharpoonup P_n(t)e^{\alpha t}$ is $p_n(t)e^{\alpha t}$
- $P_n(t)\sin(\beta t)$ or $P_n(t)\cos(\beta t)$ is $p_n(t)\sin(\beta t)$ and $p_n(t)\cos(\beta t)$
- ▶ $P_n(t)e^{\alpha t}\sin(\beta t)$ or $P_n(t)e^{\alpha t}\cos(\beta t)$ is $p_n(t)e^{\alpha t}\sin(\beta t)$ and $p_n(t)e^{\alpha t}\cos(\beta t)$

The Method of Undetermined Coefficients

See this for $g(t)$	Guess this for $y_p(t)$
$t^2 + t$	$At^2 + Bt + C$ Ae^{3t}
e^{3t}	
sin(3t)	$A\cos(3t) + B\sin(3t)$ $(At + B)e^{2t}$
te^{2t}	$A(At+B)e^{2t}$
$t \sin(3t)$	$(At+B)\sin(3t)+(Ct+D)\cos(3t)$
$t\mathrm{e}^{-t}\sin(t)+\mathrm{e}^{-t}\cos(t)$	$(At + B)\sin(3t) + (Ct + D)\cos(3t)$ $e^{-t}((At + B)\sin(t) + (Ct + D)\cos(t))$

There is one more thing to keep in mind, but we'll wait on that.

Solve
$$y'' + 3y' + 2y = e^t + t^2 + 2$$
.

$$r^2 + 3r + 2 = 0$$
 gives $y_h(t) = C_1 e^{-2t} + C_2 e^{-t}$.

$$y'' + 3y' + 2y = e^t \text{ by guessing } y_p = Ae^t:$$

$$Ae^t + 3Ae^t + 2Ae^t = e^t \Rightarrow A = \frac{1}{6}$$

$$y'' + 3y' + 2y = t^2 + 2 \text{ by } y_p = at^2 + bt + c.$$

$$2a + 3(2at + b) + 2(at^2 + bt + c) = t^2 + 2$$

$$t^2$$
: $2a = 1 \Rightarrow a = 1/2$
 t : $6a + 2b = 0 \Rightarrow b = -3/2$
 $const$: $2a + 3b + 2c = 2 \Rightarrow c = 11/4$

$$y(t) = C_1 e^{-2t} + C_2 e^{-t} + \frac{1}{6} e^t + \frac{1}{2} t^2 - \frac{3}{2} t + \frac{11}{4}$$

Solve
$$y'' + 3y' + 2y = e^{-t}$$
.

SOLUTION: Guess
$$y_p = Ae^{-t}$$
, $y' = -Ae^{-t}$, $y''_p = Ae^{-t}$:
$$Ae^{-t} - 3Ae^{-t} + 2e^{-t} = e^{-t}$$

$$0 = e^{-t}$$

Solve
$$y'' + 3y' + 2y = e^{-t}$$

To fix this, multiply your guess by t:

$$y_p = Ate^{-t}$$
 $y_p' = Ae^{-t} - Ate^{-t}$ $y_p'' = -2Ae^{-t} + Ate^{-t}$

The differential equation:

$$e^{-t}[(-2A + At) + 3(A - At) + 2At] = e^{-t} \implies A = 1$$

$$y(t) = C_1 e^{-2t} + C_2 e^{-t} + t e^{-t}$$

The Full Method

To solve $ay'' + by' + cy = g_i(t)$,

	The ansatz for y_{p_i} :
$P_n(t)$	$t^{s}(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})$
$P_n(t)e^{\alpha t}$	$t^s e^{\alpha t} (a_n t^n + \ldots + a_2 t^2 + a_1 t + a_0)$
$P_n(t)\mathrm{e}^{lpha t}\left\{egin{array}{l} \sin(eta t) \ \cos(eta t) \end{array} ight.$	$\begin{vmatrix} t^s e^{\alpha t} [\cos(\beta t)(a_n t^n + \dots + a_2 t^2 + a_1 t + a_0) + \\ \sin(\beta t)(b_n t^n + \dots + b_2 t^2 + b_1 t + b_0) \end{vmatrix}$

where s is chosen so that no part of y_{p_i} is part of the homogeneous solution.

Substitute y_{p_i} into the DE and solve for the coefficients.

- $y'' 3y' 4y = 3e^{2t} (r = 4, -1)$ SOLUTION: $y_p = Ae^{2t}$
- $y'' 3y' 4y = \cos(t) \ (r = 4, -1).$ SOLUTION: $y_p = A\cos(t) + B\sin(t)$
- $y'' 3y' 4y = 6te^t \sin(2t) (r = 4, -1)$ SOLUTION: $y_p = e^t ((At + B)\cos(2t) + (Ct + D)\sin(2t))$

- $y'' y' 2y = 3t^2$: r = -1, 2,SOLUTION: $y_p = At^2 + Bt + C$.
- $y'' y' 2y = e^{2t}$: r = -1, 2SOLUTION: $y_p = (Ae^{2t})t = Ate^{2t}$
- $y'' y' 2y = te^{-t}$: r = -1, 2. SOLUTION: $y_p = t(At + B)e^{-t} = (At^2 + Bt)e^{-t}$.

- $y'' 4y' + 4y = te^{2t}$: r = 2, 2. SOLUTION: Initial $y_p = (At + B)e^{2t}$. Multiply by t: $y_p = t(At + B)e^{2t}$. Multiply by t: $y_p = t^2(At + B)e^{2t}$
- > y'' y' = 3t + 5: r = 0, 1SOLUTION: Initial $y_p = (At + B)$ Multiply by t: $y_p = t(At + B)$.
- $y'' + 2y' + y = te^t \sin(2t)$. r = -1, -1. SOLUTION:

$$y_p = e^t [(At + B)\sin(2t) + (Ct + D)\cos(2t)]$$

$$y'' + 4y = t^2 \sin(2t) + (6t + 7)\cos(2t) (r = \pm 2i)$$

$$y_p = (At^2 + Bt + C)\sin(2t) + (Dt^2 + Et + F)\cos(2t)$$

Multiply by t:

$$y_p = t(At^2 + Bt + C)\sin(2t) + t(Dt^2 + Et + F)\cos(2t)$$

$$y'' + 2y' + 5y = 3te^{-t}\cos(2t) \ (r = -1 \pm 2i)$$

$$y_p = e^{-t} (At + B) \cos(2t) + e^{-t} (Ct + D) \sin(2t)$$

But, we need to multiply through by t.

$$y_p = te^{-t} [(At + B)\cos(2t) + (Ct + D)\sin(2t)]$$