HW to Replace 7.1: Systems of Differential Equations

Try them all, but turn in solutions to 1(a), 3(a) and all of 6 .

1. For each second order differential equation below, write the corresponding system of first order equations. Lastly, write the system in matrix-vector form.
(a) $y^{\prime \prime}+2 y^{\prime}-3 y=0$
(c) $y^{\prime \prime}-9 y=0$
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0$
(d) $y^{\prime \prime}-2 y^{\prime}+2 y=0$
2. For extra practice, go back and give the general solution to each second order DE (using methods from Chapter 3 of our textbook).
3. For each system of first order, convert to a corresponding second order differential equation.
(a) $\begin{aligned} & x^{\prime}=3 x-2 y \\ & y^{\prime}=2 x-2 y\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=-2 x+y \\ & y^{\prime}=x-2 y\end{aligned}$
(c) $\begin{aligned} & x^{\prime}=x+y \\ & y^{\prime}=4 x-2 y\end{aligned}$
4. For extra practice, solve each of the second order DEs from the previous exercise using techniques from Chapter 3 of our text.
5. Consider the system below:

$$
\begin{aligned}
& x^{\prime}=-3 x+y \\
& y^{\prime}=-2 y
\end{aligned}
$$

Solve this system by recognizing that we can solve for y directly, then substitute this into the DE for x and solve it as a first order linear DE.
6. Each system below is nonlinear. Solve each by first writing the system as $d y / d x$.
(a) $\begin{aligned} & x^{\prime}=y\left(1+x^{3}\right) \\ & y^{\prime}=x^{2}\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=4+y^{3} \\ & y^{\prime}=4 x-x^{3}\end{aligned}$
(c) $\begin{aligned} & x^{\prime}=2 x^{2} y+2 x \\ & y^{\prime}=-\left(2 x y^{2}+2 y\right)\end{aligned}$
7. Convert the third order (nonlinear) differential equation into a system of first order equations.

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime} y=t^{2}
$$

