Solutions - Homework (to replace 7.2)

1. What will the graph of $\mathrm{e}^{2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ be (where t is any real number).

SOLUTION: This is the set of all (positive) multiples of the vector, so it is a "ray" extending through the origin and through (1,2), and then outward.
2. Verify that $\mathbf{x}_{1}(t)$ below satisfies the DE below.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \mathbf{x}, \quad \mathbf{x}_{1}(t)=\mathrm{e}^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

SOLUTION: Let $x_{1}(t)=\mathrm{e}^{3 t}$ and $x_{2}(t)=2 \mathrm{e}^{3 t}$. Then verify that:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned}
$$

3. Each system below is nonlinear. Solve each by first writing the system as $d y / d x$.
(a) $\begin{aligned} x^{\prime} & =y\left(1+x^{3}\right) \\ y^{\prime} & =x^{2}\end{aligned} \Rightarrow \frac{d y}{d x}=\frac{x^{2}}{y\left(1+x^{3}\right)} \quad \Rightarrow \quad y d y=\frac{x^{2}}{1+x^{3}} d x$

Now,
(b) $\begin{aligned} & x^{\prime}=4+y^{3} \\ & y^{\prime}=4 x-x^{3}\end{aligned} \quad \Rightarrow \quad \frac{d y}{d x}=\frac{4 x-x^{3}}{4+y^{3}} \quad \Rightarrow \quad\left(4+y^{3}\right) d y=4 x-x^{3} d x$
(b) $\begin{aligned} & x^{\prime}=4+y^{3} \\ & y^{\prime}=4 x-x^{3} \\ & \text { Now, }\end{aligned} \Rightarrow \frac{d y}{d x}=\frac{4 x-x^{3}}{4+y^{3}} \Rightarrow\left(4+y^{3}\right)$
$4 y+\frac{1}{4} y^{4}=2 x^{2}-\frac{1}{4} x^{4}+C$

$$
\frac{1}{2} y^{2}=\frac{1}{2} \ln \left(1+x^{3}\right)+C
$$

(c) $\begin{aligned} x^{\prime} & =2 x^{2} y+2 x \\ y^{\prime} & =-\left(2 x y^{2}+2 y\right)\end{aligned} \quad \Rightarrow \quad \frac{d y}{d x}=\frac{-\left(2 x y^{2}+2 y\right)}{2 x^{2} y+2 x}$

$$
\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) \frac{d y}{d x}=0
$$

This is exact, with $M_{y}=4 x y+2$ and $N_{x}=4 x y+2$.
Antidifferentiating M with respect to x, we get:

$$
x^{2} y^{2}+2 x y
$$

If we differentiate that with respect to y, we get $2 x^{2} y+2 x$, so that's our function. The solution is then:

$$
x^{2} y^{2}+2 x y=C
$$

4. For each matrix below, compute the determinant $\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|$. Your determinant should be an expression in λ.
(a) $\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]$

SOLUTION:

$$
\left[\begin{array}{rr}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right]=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3
$$

(b) $\left[\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right]$

SOLUTION:

$$
\left[\begin{array}{rr}
3-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right]=(3-\lambda)(-2-\lambda)+4=\lambda^{2}-\lambda-2
$$

(c) $\left[\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right]$

SOLUTION:

$$
\left[\begin{array}{rr}
1-\lambda & -2 \\
3 & -4-\lambda
\end{array}\right]=(1-\lambda)(-4-\lambda)+6=\lambda^{2}+3 \lambda+2
$$

5. Show that if the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then the determinant $\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|$ can be expressed as:

$$
\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)
$$

where $\operatorname{tr}(A)$ is the trace of A and $\operatorname{det}(A)$ is the determinant of A.
SOLUTION: Expanding the determinant, you should get $\lambda^{2}-(a+d) \lambda+(a d-b c)$.
6. Suppose $\lambda=2$. Using the matrix $\left[\begin{array}{cc}3 & -2 \\ 2 & -2\end{array}\right]$, solve the following system for v_{1}, v_{2}. Be sure to write your answer in vector form.

$$
\begin{aligned}
(a-\lambda) v_{1} & +b v_{2}
\end{aligned}=0
$$

SOLUTION: If $\lambda=2$, the system of equations simplifies to a single line (the two lines are multiples of each other). We then write the line in parametric form:

$$
\begin{array}{r}
v_{1}-2 v_{2}=0 \\
2 v_{2}-4 v_{2}
\end{array}=0 \quad \Rightarrow \quad \mathbf{v}=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

7. Suppose $\lambda=-1$. Using the matrix $\left[\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right]$, solve the following system for v_{1}, v_{2}. Be sure to write your answer in vector form.

$$
\begin{array}{r}
+b v_{2}=0 \\
(a-\lambda) v_{1}=(d-\lambda) v_{2}=0
\end{array} \quad \Rightarrow \quad \begin{array}{r}
4 v_{1}-2 v_{2}=0 \\
2 v_{1}-v_{2}=0
\end{array} \quad \Rightarrow \quad \mathbf{v}=t\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

