
Lecture Notes to substitute for 7.3-7.5

We want to solve the system:

x′1 = ax1 + bx2
x′2 = cx1 + dx2

⇒ x′ =

[
a b
c d

]
x

As we did in Chapter 3 for 2d order equations, we use an ansatz. In this case, the ansatz
is x(t) = eλtv, for some constant λ and some constant (non-zero) vector v. Now, let’s
substitute the ansatz into our system of DEs and see what we get.

• First, the derivative with respect to t is straightforward, since v is a constant, and the
exponential function is the only thing dependent on t. Therefore,

x′ = λeλtv

• On the other side of the equation we have the matrix times x, which gives us:

Ax = Aeλtv = eλtAv

• Put the two sides together for x′ = Ax and expand/simplify:

eλtAv = λeλtv ⇒ Av = λv or
av1 + bv2 = λv1
cv2 + dv2 = λv2

This last system of equations, with λ and v1, v2 the unknowns, is a very important one-
In fact, it represents an important definition:

If the system above is true for that particular value of λ and non-zero vector v, then λ
is an eigenvalue of the matrix A and v is an associated eigenvector. Note that while v is
not allowed to be the zero vector, λ could be zero.

Continuing, Compute Eigenvalues and Eigenvectors:

Continuing with the system of equations, let’s see how we actually solve for λ, v1, v2. First,
we’ll bring over the λ terms:

av1 + bv2 = λv1
cv1 + dv2 = λv2

⇒ (a− λ)v1 +bv2 = 0
cv1 +(d− λ)v2 = 0

For this system to have a solution besides the trivial one (v1 = v2 = 0), we said earlier that
the determinant must be zero (for example, so Cramer’s rule cannot be used).∣∣∣∣ a− λ b

c d− λ

∣∣∣∣ = 0 ⇒ λ2 − (a+ d)λ+ (ad− bc) = 0
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This equation gives us a way of solving for the eigenvalues! You might recognize those
two quantities that are computed as the trace and determinant of A. This equation is the
characteristic equation1.

λ2 − Tr(A)λ+ det(A) = 0

Putting these quantities into the quadratic formula, and defining the discriminant ∆ =
(Tr(A))2 − 4det(A), then the eigenvalues are:

λ =
Tr(A)±

√
∆

2

Just as in Chapter 3, the form of the solution will depend on whether ∆ is positive (two real
λ), negative (two complex λ) or zero (one real λ). Today, we will focus on the distinct
eigenvalues case.

Examples: Solve for eigenvalues and eigenvectors

Let A =

[
7 2
−4 1

]
. Find eigenvalues and eigenvectors for A.

SOLUTION: We could jump right to the characteristic equation, but for practice its good
to write down what it is we actually want to solve (the unknowns below are λ, v1, v2):

7v1 + 2v2 = λv1
−4v1 + v2 = λv2

⇒ (7− λ)v1 + 2v2 = 0
−4v2 + (1− λ)v2 = 0

For this to have a non-zero solution v1, v2, the determinant of the coefficient matrix must be
zero:

(7− λ)(1− λ) + 8 = 0 ⇒ λ2 − 8λ+ 15 = 0

(Note that the trace is 8, determinant is 15). This factors, so we can solve for λ:

(λ− 5)(λ− 3) = 0 ⇒ λ = 3, 5

Now, for each λ, go back to our system of equations for v1, v2 and solve. NOTE: By design,
these equations should be multiples of each other!

For λ = 3:

(7− 3)v1 + 2v2 = 0
−4v2 + (1− 3)v2 = 0

⇒ 4v1 + 2v2 = 0
−4v2 − 2v2 = 0

⇒ 4v1 + 2v2 = 0

There are an infinite number of solutions (and there always be). We want to choose “nice”
values of v1, v2 that satisfies this relationship (or alternatively, lies on the line). An easy way
of writing v1, v2 is to notice the following:

Given ax+ by = 0, we can choose x = b, y = −a to lie on the line.

1We defined the characteristic equation before, in Chapter 3. We’ll see they are the same equation later.
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Continuing, we’ll take our vector v =

[
2
−4

]
. As we’ll see in the exercises, we can take

any scalar multiple of v as our answer, so you could have taken v =

[
1
−2

]
or v =

[
−1

2

]
as well.

Now go through the same process to find the eigenvector for λ = 5:

(7− 5)v1 + 2v2 = 0
−4v1 + (1− 5)v2 = 0

⇒ 2v1 + 2v2 = 0 ⇒ v1 + v2 = 0

Therefore, we take v =

[
1
−1

]
.

A Little Theory

So far, we’ve said that, if λ,v form an eigenvalue-eigenvector pair, then x(t) = eλtv is a
solution to x′ = Ax.

As we’ve now seen, we might have two λ’s. How do we deal with that?

• If λ1,v1 and λ2,v2 are eigenvalues and eigenvectors for matrix A, then both

x1 = eλ1tv1 and x2 = eλ2tv2

are each solutions to x′ = Ax.

• If λ1,v1 and λ2,v2 are eigenvalues and eigenvectors for matrixA, the linear combination
of these is a solution:

C1e
λ1tv1 + C2e

λ2tv2

• Lastly, x1,x2 will form a fundamental set of solutions if they are not constant multiples
of each other.

• In this section, if λ1, λ2 are two distinct real numbers, then the eigenvectors will not
be constant multiples of each other so that the linear combination gives the general
solution:

x(t) = C1e
λ1tv1 + C2e

λ2tv2

Let’s now find the general solution to a system.

Example: Solve a Linear System

Solve the linear system using eigenvectors:

x′ =

[
3 1
1 3

]
x
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SOLUTION: Compute the eigenvalues and eigenvectors. The determinant is 8, the trace is
6. The characteristic equation is:

λ2 − 6λ+ 8 = 0 ⇒ (λ− 2)(λ− 4) = 0

Therefore, λ = 2, 4.

• For λ = 2:

(3− 2)v1 + v2 = 0
v1 + (3− 2)v2 = 0

⇒ v1 + v2 = 0
v1 + v2 = 0

⇒ v =

[
−1

1

]

• For λ = 4,

(3− 4)v1 + v2 = 0
v1 + (3− 4)v2 = 0

⇒ −v1 + v2 = 0
v1 − v2 = 0

⇒ v =

[
1
1

]
The general solution is:

x(t) = C1e
2t

[
−1

1

]
+ C2e

4t

[
1
1

]

Example: Solve the linear system.

The technique is the same as the last example. Write it down, try it out, then come back to
this page to see if we have the same answer.

x′ =

[
3 −2
2 −2

]
x Tr(A) = 1 det(A) = −2 ∆ = 9

The characteristic equation is λ2 − λ− 2 = 0, or (λ+ 1)(λ− 2) = 0.
The eigenvalues are λ = −1, 2. The corresponding eigenvectors are found by solving the

system above. For λ = −1:

(3 + 1)v1 − 2v2 = 0
2v1 + (−2 + 1)v2 = 0

2v1 − v2 = 0 v =

[
1
2

]
For λ = 2:

(3− 2)v1 − 2v2 = 0
2v1 + (−2− 2)v2 = 0

v1 − 2v2 = 0 v =

[
2
1

]
The solution to the system of differential equations is then:

x(t) = C1e
−t

[
1
2

]
+ C2e

2t

[
2
1

]
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Example:

Consider the second order DE: y′′ + 4y′′ + 3y = 0. In Chapter 3, we looked at something we
called the characteristic equation:

r2 + 4r + 3 = 0 ⇒ (r + 1)(r + 3) = 0 ⇒ r = −1,−3.

and we solved the second order equation. Notice that if we convert this to a system of first
order equations, by letting x1 = y and x2 = y′, then we get:

x′1 = x2
x′2 = −3x1 − 4x2

⇒ x′ =

[
0 1
−3 −4

]
x

Now the trace is −4 and the determinant is 3, so the new characteristic equation is

λ2 + 4λ+ 3 = 0

Which is the same! With λ = −1,−3, we would still need to find eigenvectors before we
would have the solution (try it!).

Summary

To solve the system
x′ = ax1 + bx2
x′2 = cx1 + dx2

the ansatz is x(t) = eλtv. We found that the λ, v that work are called eigenvalues and
eigenvectors of the coefficient matrix.

To compute λ,v, we first write the equations we’re solving, we’ll call this equation (*):

(a− λ)v1 +bv2 = 0
cv1 +(d− λ)v2 = 0

The system has a non-zero solution for v1, v2 only if the determinant of the coefficient
matrix is zero. This is the characteristic equation, used to solve for the eigenvalues λ1,2.

λ2 − Tr(A)λ+ det(A) = 0

The solution then depends on the discriminant (as it did in Chapter 3). The first case is
when the discriminant is positive so we have two real roots.

If Tr(A)2 − 4det(A) > 0, then λ is two distinct, real numbers: λ = r1, r2. For each λ, go
back to Equation (*) and solve for an eigenvector. Once those have been determined, the
full solution to the DE is given by:

x(t) = C1e
r1tv1 + C2e

r2tv2

We’ll look more at graphing these, and the other cases for the quadratic in future sections.
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