Outline- Section 3.8

- Full model: $m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t)$.
- Last time: Generic $F(t)$
(Method of Undet Coeffs or Var of Params)
- This time: $F(t)=\cos (\omega t)$ or $\sin (\omega t)$ (Periodic forcing).

Side remark on Vocab:

1. Transient part of the solution part of soln \rightarrow zero as $t \rightarrow \infty$. $m, \gamma, k>0$ then $y_{h}(t) \rightarrow 0$.
2. Forced Response part of soln remaining. Also called the steady state solution.
Today we look at the forced response...

But what's new

Analyze in the case of our model:

- No Damping, Periodic Forcing.
- Damping and Periodic Forcing.

No Damping, Periodic Forcing

Model

$$
m u^{\prime \prime}+k u=A \cos (\omega t) \quad \Rightarrow \quad u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos (\omega t)
$$

The homogeneous part of the solution can be expressed as:

$$
u_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

For the particular solution, two subcases: $\omega \neq \omega_{0}$ and $\omega=\omega_{0}$

Forcing and Natural Frequencies are Distinct

$$
u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos (\omega t)
$$

If $\omega_{0} \neq \omega$, then ansatz:

$$
y_{p}=A \mathrm{e}^{i \omega t} \text { and } y_{p}^{\prime}=i \omega A \mathrm{e}^{i \omega t} \text { and } y_{p}^{\prime \prime}=-\omega^{2} A \mathrm{e}^{i \omega t}
$$

$$
A \mathrm{e}^{i \omega t}\left(-\omega^{2}+\omega_{0}^{2}\right)=F_{0} \mathrm{e}^{i \omega t} \Rightarrow A=\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}}
$$

so the overall solution is:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)+\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)
$$

To simplify the analysis, we'll also assume $y(0)=y^{\prime}(0)=0$ (Exercise 1)

$$
C_{1}=-\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}} \quad C_{2}=0
$$

In this case,

$$
y(t)=\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)
$$

To "simplify" our analysis, we rewrite this difference as a product.

Write solution as a product

Using some trig (See pg 213):

$$
\frac{2 F_{0}}{\omega_{0}^{2}-\omega^{2}} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right) \sin \left(\frac{\left(\omega_{0}+\omega\right) t}{2}\right)
$$

If $\omega \approx \omega_{0}$, the first term is a larger and longer wave.

$$
\pm \frac{2 F_{0}}{\omega_{0}^{2}-\omega^{2}} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right)
$$

Let's see a graph...

Graph of the solution, $\omega=0.8, \omega_{0}=1$

$\mathrm{A}:=\mathrm{plot}(3 * \sin ((1 / 10) * t), \mathrm{t}=0.70$, linestyle=dash, color=red) :
$B:=p l o t(-3 * \sin ((1 / 10) * t), t=0.70$, linestyle=dash, color=pink) :
$C:=p l o t(3 * \sin ((1 / 10) * t) * \sin ((9 / 10) * t), t=0.70$, linestyle=solid, color=black):
display (\{A, B, C\});

This is Beating...
Circular frequency of a single beat (half the frequency of the sine): $\left|\omega_{0}-\omega\right|$.

What happens as $\omega \rightarrow \omega_{0}$?

$$
\frac{2 F_{0}}{\omega_{0}^{2}-\omega^{2}} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right) \sin \left(\frac{\left(\omega_{0}+\omega\right) t}{2}\right)
$$

If $\omega \approx \omega_{0}$, the first term is a larger and longer wave.

$$
\pm \frac{2 F_{0}}{\omega_{0}^{2}-\omega^{2}} \sin \left(\frac{\left(\omega_{0}-\omega\right) t}{2}\right)
$$

The "envelope" gets longer and longer with larger and larger amplitude....

What happens at $\omega=\omega_{0}$? Something known as resonance.
Several ways of getting the particular solution:

1. Start Method of Undet Coeffs over again. Ansatz: $u_{p}=A t e^{i \omega_{0} t}$.
2. Use the previous solution, and take the limit as $\omega \rightarrow \omega_{0}$.

Take limit (I'Hospital's Rule)

$$
\begin{gathered}
\lim _{\omega \rightarrow \omega_{0}} \frac{F_{0}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)}{\omega_{0}^{2}-\omega^{2}}= \\
\lim _{\omega \rightarrow \omega_{0}} \frac{-F_{0} t \sin (\omega t)}{-2 \omega}=\frac{F_{0}}{2 \omega_{0}} t \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Now "blows up", or becomes unbounded... This is resonance.
Resonance occurs when the forcing freq matches the natural freq.

Summary so far...

Given $u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos (\omega t)$

1. If $\omega \approx \omega_{0}$, we get Beating.

The (circ) freq of one beat is $\left|\omega_{0}-\omega\right|$.
2. If $\omega=\omega_{0}$, then Resonance
(Pause for the video)

Full model, Periodic Forcing

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos (\omega t)
$$

Slightly altered:

$$
u^{\prime \prime}+p u^{\prime}+q u=\cos (\omega t)
$$

The characteristic equation has roots:

$$
r=\frac{-p \pm \sqrt{p^{2}-4 q}}{2}, \quad p>0
$$

Implies that, always, we have

$$
u_{p}(t)=A \cos (\omega t)+B \sin (\omega t)
$$

No solution is completely unbounded...

The Big Question

Does a form of resonance persist?

Given a fixed p, q in the model, is it possible to tune the forcing frequency to maximize the amplitude of the forced response?

Answer: It is! (Break a wine glass with your voice)

Full model, Periodic Forcing

$$
u^{\prime \prime}+p u^{\prime}+q u=\cos (\omega t)
$$

Ansatz $y_{p}=A \mathrm{e}^{i \omega t}$ and $y_{p}^{\prime}=A i \omega \mathrm{e}^{i \omega t}$ and $y_{p}^{\prime \prime}=-A \omega^{2} \mathrm{e}^{i \omega t}$. Then

$$
A \mathrm{e}^{i \omega t}\left(-\omega^{2}+i \omega p+q\right)=\mathrm{e}^{i \omega t}
$$

so that

$$
A=\frac{1}{\left(q-\omega^{2}\right)+i \omega p}
$$

and the particular solution is

$$
u_{p}=\operatorname{Re}\left(A \mathrm{e}^{i \omega t}\right)
$$

Given

$$
u_{p}(t)=\operatorname{Real}\left(\frac{1}{\left(q-\omega^{2}\right)+i \omega p} \mathrm{e}^{i \omega t}\right)=R \cos (\omega t-\delta)
$$

(See Complexification Handout) Amplitude R and phase angle δ for u_{p} are given by:

$$
R(\omega)=\frac{1}{\left|\left(q-\omega^{2}\right)+i \omega p\right|} \quad \delta=\tan ^{-1}\left(\frac{\omega p}{q-\omega^{2}}\right)
$$

We observe that R (the amplitude of u_{p}) is a function of ω.
Can we maximize R ?

Set the derivative to zero and solve for $\omega \ldots$ NOTE: If

$$
R=\frac{1}{\sqrt{f(\omega)}} \quad \Rightarrow \quad R^{\prime}=\frac{1}{2}(f(\omega))^{-1 / 2} f^{\prime}(\omega)
$$

Therefore, if we solve for $R^{\prime}=0$, we only need $f^{\prime}(\omega)=0$

Continuing - Where is R at its maximum?

$$
\begin{gathered}
R=\frac{1}{\left|\left(q-\omega^{2}\right)+i \omega p\right|}=\frac{1}{\sqrt{\left(q-\omega^{2}\right)^{2}+\omega^{2} p^{2}}} \\
f(\omega)=\left(q-\omega^{2}\right)^{2}+p^{2} \omega^{2} \Rightarrow \quad \frac{d f}{d \omega}=2\left(q-\omega^{2}\right)(-2 \omega)+p^{2} \cdot 2 \omega=0
\end{gathered}
$$

Solving for only the positive ω, we get $\omega=\sqrt{\frac{2 q-p^{2}}{2}}$.

Numerical Example

Find the forced response to

$$
u^{\prime \prime}+u^{\prime}+2 u=\cos (2 t)
$$

SOLUTION: Ansatz is $A e^{2 i t}$. Substitute and factor:

$$
A \mathrm{e}^{2 i t}(-4+2 i+2)=\mathrm{e}^{2 i t} \quad \Rightarrow \quad A=\frac{1}{-2+2 i}
$$

Therefore, the amplitude and phase will be

$$
R=\frac{1}{|-2+2 i|}=\frac{1}{\sqrt{4+4}}=\frac{1}{\sqrt{8}} \quad \delta=\arg (-2+2 i)=\frac{3 \pi}{4}
$$

Therefore,

$$
u_{p}=\frac{1}{2 \sqrt{2}} \cos \left(2 t-\frac{3 \pi}{4}\right)
$$

Numerical Example 2

Find ω that maximizes the amplitude of the forced response to:

$$
u^{\prime \prime}+u^{\prime}+2 u=\cos (\omega t)
$$

SOLUTION: Ansatz is $A \mathrm{e}^{i \omega t}$. Substitute and factor:

$$
A \mathrm{e}^{i \omega t}\left(-\omega^{2}+i \omega+2\right)=\mathrm{e}^{i \omega t} \Rightarrow A=\frac{1}{\left(2-\omega^{2}\right)+i \omega}
$$

Therefore, the amplitude is

$$
R=\frac{1}{\left|\left(2-\omega^{2}\right)+i \omega\right|}=\frac{1}{\sqrt{\left(2-\omega^{2}\right)^{2}+\omega^{2}}}=\frac{1}{\sqrt{f(\omega)}}
$$

Therefore, $R^{\prime}(\omega)=0$ when $f^{\prime}(\omega)=0$, which is computed:
$f(\omega)=\left(2-\omega^{2}\right)^{2}-\omega^{2} \quad \Rightarrow \quad f^{\prime}(\omega)=2\left(2-\omega^{2}\right)(-2 \omega)+2 \omega=0$
Solving for ω, we get $\omega=\sqrt{\frac{3}{2}}$
l> with (plots):
$>\mathrm{R}:=1 /\left(\operatorname{sqrt}\left(\left(2-w^{\wedge} 2\right)^{\wedge} 2+w^{\wedge} 2\right)\right)$;

$$
R:=\frac{1}{\sqrt{\left(-w^{2}+2\right)^{2}+w^{2}}}
$$

$\operatorname{plot}(\mathrm{R}, \mathrm{w}=0.1 . .5)$;

solve ($\operatorname{diff}(R, w)=0, W)$;

$$
0, \frac{1}{2} \sqrt{6},-\frac{1}{2} \sqrt{6}
$$

Numerical Example 3

Find ω that maximizes the amplitude of the forced response to:

$$
u^{\prime \prime}+\frac{1}{10} u^{\prime}+2 u=\cos (\omega t)
$$

We'll just compare the maximum amplitude:

$$
R=\frac{1}{\left|\left(2-\omega^{2}\right)+i \omega / 10\right|}=\frac{1}{\sqrt{\left(2-\omega^{2}\right)^{2}+\omega^{2} / 100}}
$$

(Red- Earlier R, Black- The R shown here)

What have we shown?

- With damping and periodic forcing, no unbdd solns.
- However, are able to "tune" the freq of the forcing function to maximize the response.
- The smaller the relative size of the damping, the larger the maximum amplitude.
- This has very important engineering implications (Go to video!)

