
Outline- Section 3.8

I Full model: mu′′ + γu′ + ku = F (t).

I Last time: Generic F (t)
(Method of Undet Coeffs or Var of Params)

I This time: F (t) = cos(ωt) or sin(ωt) (Periodic forcing).



Side remark on Vocab:

1. Transient part of the solution part of soln → zero as
t →∞.
m, γ, k > 0 then yh(t)→ 0.

2. Forced Response part of soln remaining.
Also called the steady state solution.

Today we look at the forced response...



But what’s new

Analyze in the case of our model:

I No Damping, Periodic Forcing.

I Damping and Periodic Forcing.



No Damping, Periodic Forcing

Model

mu′′ + ku = A cos(ωt) ⇒ u′′ + ω2
0u = F0 cos(ωt)

The homogeneous part of the solution can be expressed as:

uh(t) = C1 cos(ω0t) + C2 sin(ω0t)

For the particular solution, two subcases: ω 6= ω0 and ω = ω0



Forcing and Natural Frequencies are Distinct

u′′ + ω2
0u = F0 cos(ωt)

If ω0 6= ω,then ansatz:
yp = Aeiωt and y ′p = iωAeiωtand y ′′p = −ω2Aeiωt .

Aeiωt(−ω2 + ω2
0) = F0e

iωt ⇒ A =
F0

ω2
0 − ω2

so the overall solution is:

y(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

ω2
0 − ω2

cos(ωt)



To simplify the analysis, we’ll also assume y(0) = y ′(0) = 0
(Exercise 1)

C1 = − F0
ω2
0 − ω2

C2 = 0

In this case,

y(t) =
F0

ω2
0 − ω2

(cos(ωt)− cos(ω0t))

To “simplify” our analysis, we rewrite this difference as a product.



Write solution as a product

Using some trig (See pg 213):

2F0
ω2
0 − ω2

sin

(
(ω0 − ω)t

2

)
sin

(
(ω0 + ω)t

2

)

If ω ≈ ω0, the first term is a larger and longer wave.

± 2F0
ω2
0 − ω2

sin

(
(ω0 − ω)t

2

)

Let’s see a graph...



Graph of the solution, ω = 0.8, ω0 = 1

This is Beating...
Circular frequency of a single beat (half the frequency of the sine):
|ω0 − ω|.



What happens as ω → ω0?

2F0
ω2
0 − ω2

sin

(
(ω0 − ω)t

2

)
sin

(
(ω0 + ω)t

2

)
If ω ≈ ω0, the first term is a larger and longer wave.
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(
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2

)

The “envelope” gets longer and longer with larger and larger
amplitude....



What happens at ω = ω0? Something known as resonance.

Several ways of getting the particular solution:

1. Start Method of Undet Coeffs over again.
Ansatz: up = Ateiω0t .

2. Use the previous solution, and take the limit as ω → ω0.



Take limit (l’Hospital’s Rule)

lim
ω→ω0

F0 (cos(ωt)− cos(ω0t))

ω2
0 − ω2

=

lim
ω→ω0

−F0t sin(ωt)

−2ω
=

F0
2ω0

t sin(ω0t)

Now ”blows up”, or becomes unbounded... This is resonance.

Resonance occurs when the forcing freq matches the natural freq.



Summary so far...

Given u′′ + ω2
0u = F0 cos(ωt)

1. If ω ≈ ω0, we get Beating.
The (circ) freq of one beat is |ω0 − ω|.

2. If ω = ω0, then Resonance

(Pause for the video)



Full model, Periodic Forcing

mu′′ + γu′ + ku = F0 cos(ωt)

Slightly altered:
u′′ + pu′ + qu = cos(ωt)

The characteristic equation has roots:

r =
−p ±

√
p2 − 4q

2
, p > 0

Implies that, always, we have

up(t) = A cos(ωt) + B sin(ωt)

No solution is completely unbounded...



The Big Question

Does a form of resonance persist?

Given a fixed p, q in the model, is it possible to tune the forcing
frequency to maximize the amplitude of the forced response?

Answer: It is! (Break a wine glass with your voice)



Full model, Periodic Forcing

u′′ + pu′ + qu = cos(ωt)

Ansatz yp = Aeiωt and y ′p = Aiωeiωt and y ′′p = −Aω2eiωt .
Then

Aeiωt(−ω2 + iωp + q) = eiωt

so that

A =
1

(q − ω2) + iωp

and the particular solution is

up = Re
(
Aeiωt

)



Given

up(t) = Real

(
1

(q − ω2) + iωp
eiωt

)
= R cos(ωt − δ)

(See Complexification Handout) Amplitude R and phase angle δ
for up are given by:

R(ω) =
1

|(q − ω2) + iωp|
δ = tan−1

(
ωp

q − ω2

)
We observe that R (the amplitude of up) is a function of ω.

Can we maximize R?



Set the derivative to zero and solve for ω...
NOTE: If

R =
1√
f (ω)

⇒ R ′ =
1

2
(f (ω))−1/2f ′(ω)

Therefore, if we solve for R ′ = 0, we only need f ′(ω) = 0



Continuing - Where is R at its maximum?

R =
1

|(q − ω2) + iωp|
=

1√
(q − ω2)2 + ω2p2

f (ω) = (q−ω2)2+p2ω2 ⇒ df

dω
= 2(q−ω2)(−2ω)+p2 ·2ω = 0

Solving for only the positive ω, we get ω =
√

2q−p2
2 .



Numerical Example

Find the forced response to

u′′ + u′ + 2u = cos(2t)

SOLUTION: Ansatz is Ae2it .Substitute and factor:

Ae2it(−4 + 2i + 2) = e2it ⇒ A =
1

−2 + 2i

Therefore, the amplitude and phase will be

R =
1

| − 2 + 2i |
=

1√
4 + 4

=
1√
8

δ = arg(−2 + 2i) =
3π

4

Therefore,

up =
1

2
√

2
cos

(
2t − 3π

4

)



Numerical Example 2

Find ω that maximizes the amplitude of the forced response to:

u′′ + u′ + 2u = cos(ωt)

SOLUTION: Ansatz is Aeiωt . Substitute and factor:

Aeiωt(−ω2 + iω + 2) = eiωt ⇒ A =
1

(2− ω2) + iω

Therefore, the amplitude is

R =
1

|(2− ω2) + iω|
=

1√
(2− ω2)2 + ω2

=
1√
f (ω)

Therefore, R ′(ω) = 0 when f ′(ω) = 0,which is computed:

f (ω) = (2− ω2)2 − ω2 ⇒ f ′(ω) = 2(2− ω2)(−2ω) + 2ω = 0

Solving for ω, we get ω =

√
3

2





Numerical Example 3

Find ω that maximizes the amplitude of the forced response to:

u′′ +
1

10
u′ + 2u = cos(ωt)

We’ll just compare the maximum amplitude:

R =
1

|(2− ω2) + iω/10|
=

1√
(2− ω2)2 + ω2/100

(Red- Earlier R, Black- The R shown here)



What have we shown?

I With damping and periodic forcing, no unbdd solns.

I However, are able to ”tune” the freq of the forcing function
to maximize the response.

I The smaller the relative size of the damping, the larger the
maximum amplitude.

I This has very important engineering implications
(Go to video!)


