
Solutions to Review Questions: Exam 3

1. What is the ansatz we use for y in

• Chapter 6? SOLUTION: y(t) is piecewise continuous and is of exponential order
(so that Y (s) exists).

• Section 5.2? SOLUTION: y(x) is analytic at x = x0. That is,

y(x) =
∞∑
n=0

an(x− x0)n

2. Finish the definitions:

• The Heaviside function, uc(t):

uc(t) =

{
0 if t < c
1 if t ≥ c

c > 0

• The Dirac δ−function: δ(t− c)

δ(t− c) = lim
τ→0

dτ (t− c)

where

dτ (t− c) =

{
1
2τ

if c− τ < t < c+ τ
0 elsewhere

• Define the convolution: (f ∗ g)(t)

(f ∗ g)(t) =
∫ t

0
f(t− u)g(u) du

• A function is of exponential order if:

there are constants M,k, and a so that

|f(t)| ≤Mekt for all t ≥ a

3. Use the definition of the Laplace transform to determine L(f):

(a)

f(t) =

{
3, 0 ≤ t < 2
6− t, t ≥ 2∫ ∞

0
e−stf(t) dt =

∫ 2

0
3e−st dt+

∫ ∞
2

(6− t)e−st dt

The second antiderivative is found by integration by parts:

∫ ∞
2

(6− t)e−st dt⇒
+ 6− t e−st

− −1 (−1/s)e−st

+ 0 (1/s2)e−st
⇒ e−st

(
−6− t

s
+

1

s2

)∣∣∣∣∞
2

Putting it all together,

−3

s
e−st

∣∣∣∣2
0
+
(

0− e−2s
(
−4

s
+

1

s2

))
= −3e−2s

s
+

3

s
+

4e−2s

s
−e−2s

s2
=

3

s
+e−2s

(
1

s
− 1

s2

)
NOTE: Did you remember to antidifferentiate in the third column?
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(b)

f(t) =

{
e−t, 0 ≤ t < 5
−1, t ≥ 5

∫ ∞
0

e−stf(t) dt =
∫ 5

0
e−ste−t dt+

∫ ∞
5
−e−st dt =

∫ 5

0
e−(s+1)t dt+

∫ ∞
5
−e−st dt

Taking the antiderivatives,

− 1

s+ 1
e−(s+1)t

∣∣∣∣5
0

+
1

s
e−st

∣∣∣∣∞
5

=
1

s+ 1
− e−5(s+1)

s+ 1
+ 0− e−5s

s

4. Check your answers to Problem 3 by rewriting f(t) using the step (or Heaviside) function,
and use the table to compute the corresponding Laplace transform.

(a) f(t) = 3(u0(t)− u2(t)) + (6− t)u2(t) = 3− 3u2(t) + (6− t)u2(t) = 3 + (3− t)u2(t)
For the second term, notice that the table entry is for uc(t)h(t− c). Therefore, if

h(t− 2) = 3− t then h(t) = 3− (t+ 2) = 1− t and H(s) =
1

s
− 1

s2

Therefore, the overall transform is:

3

s
+ e−2s

(
1

s
− 1

s2

)

(b) f(t) = e−t (u0(t)− u5(t))− u5(t)
We can rewrite f in preparation for the transform:

f(t) = e−tu0(t)− e−tu5(t)− u5(t)

For the middle term,

h(t− 5) = e−t ⇒ h(t) = e−(t+5) = e−5e−t

so the overall transform is:

F (s) =
1

s+ 1
− e−5

e−5s

s+ 1
− e−5s

s

5. Show that cos(t) is of exponential order.

SOLUTION: Recall that f(t) is of exponential order means that |f(t)| ≤Mekt for t ≥ c.
Since cos(t) ≤ 1 for all t, then we can take M = 1 and k = 0 (or k = 1).

| cos(t)| ≤ 1 = e0t for t ≥ 0

6. Write the following functions in piecewise form (thus removing the Heaviside function):
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(a) (t+ 2)u2(t) + sin(t)u3(t)− (t+ 2)u4(t)

SOLUTION: First, notice that (t + 2) is turned “on” at time 2. At time t = 3,
sin(t) joins the first function, and at time t = 4, we subtract the function t+2 back
off. 

0 if 0 ≤ t < 2
t+ 2 if 2 ≤ t < 3

t+ 2 + sin(t) if 3 ≤ t < 4
sin(t) if t ≥ 4

(b)
4∑

n=1

unπ(t) sin(t− nπ)

SOLUTION: First (you can determine this graphically) sin(t− π) = − sin(t), and
sin(t − 2π) = sin(t), and sin(t − 3π) = − sin(t), etc.- You should simplify these.
Therefore:

0 if 0 ≤ t < π
sin(t− π) if π ≤ t < 2π
sin(t− π) + sin(t− 2π) if 2π < t < 3π
sin(t− π) + sin(t− 2π) + sin(t− 3π) if 3π ≤ t < 4π
sin(t− π) + sin(t− 2π) + sin(t− 3π) + sin(t− 4π) if t ≥ 4π

=


0 if 0 ≤ t < π

− sin(t) if π ≤ t < 2π
0 if 2π < t < 3π

− sin(t) if 3π ≤ t < 4π
0 if t ≥ 4π

7. Determine the Laplace transform:

(a) t2e−9t

2

(s+ 9)3

(b) e2t − t3 − sin(5t)
1

s− 2
− 6

s4
− 5

s2 + 25

(c) t2y′ (t). Use the table, L(−tnf(t)) = F (n)(s). In this case, F (s) = sY (s)− y(0), so
F ′(s) = sY ′(s) + Y (s) and F ′′(s) = sY ′′(s) + 2Y ′(s).

(d) e3t sin(4t)
4

(s− 3)2 + 16

(e) etδ(t− 3)

In this case, notice that f(t)δ(t − c) is the same as f(c)δ(t − c), since the delta
function is zero everywhere except at t = c. Therefore,

L(etδ(t− c)) = e3e−3s
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(f) t2u4(t)

In this case, let h(t− 4) = t2, so that

h(t) = (t+ 4)2 = t2 + 8t+ 16 ⇒ H(s) =
2 + 8s+ 16s2

s3

and the overall transform is e−4sH(s).

8. Find the inverse Laplace transform:

(a)
2s− 1

s2 − 4s+ 6

2s− 1

s2 − 4s+ 6
=

2s− 1

(s2 − 4s+ 4) + 2
= 2

s− 1/2

(s− 2)2 + 2
=

In the numerator, make s− 1
2

into s− 2 + 3
2
, then

2

(
s− 2

(s− 2)2 + 2
+

3

2
√

2

√
2

(s− 2)2 + 2

)
⇒ 2e2t cos(

√
2t) +

3√
2

e2t sin(
√

2t)

(b)
7

(s+ 3)3
=

7

2!

2!

(s+ 3)3
⇒ 7

2
t2e−3t

(c)
e−2s(4s+ 2)

(s− 1)(s+ 2)
= e−2sH(s), where

H(s) =
4s+ 2

(s− 1)(s+ 2)
=

2

s− 1
+

2

s+ 2
⇒ h(t) = 2et + 2e−2t

and the overall inverse: u2(t)h(t− 2).

(d)
3s− 1

2s2 − 8s+ 14
Complete the square in the denominator, factoring the constants

out:

3s− 1

2(s2 − 8s+ 5)
=

3

2
· s− 1/3

(s− 2)2 + 3
=

3

2

(
s− 2

(s− 2)2 + 3
+

5

3
· 1√

3

√
3

(s− 2)2 + 3

)

The inverse transform is:

3

2
e2t cos(

√
3t) +

5

2
√

3
e2t sin(

√
3t)

(e)
(
e−2s − e−3s

) 1

s2 + s− 6
=
(
e−2s − e−3s

)
H(s)

Where:

H(s) =
1

s2 + s− 6
=

1

5

1

s− 2
− 1

5

1

s+ 3

so that

h(t) =
1

5
e2t − 1

5
e−3t

and the overall transform is:

u2(t)h(t− 2)− u3(t)h(t− 3)
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9. For the following differential equations, solve for Y (s) (the Laplace transform of the
solution, y(t)). Do not invert the transform.

(a) y′′ + 2y′ + 2y = t2 + 4t, y(0) = 0, y′(0) = −1

s2Y + 1 + 2sY + 2Y =
2

s3
+

4

s2

so that

Y (s) =
2

s3(s2 + 2s+ 2)
+

4

s2(s2 + 2s+ 2)
− 1

s2 + 2s+ 2

(b) y′′ + 9y = 10e2t, y(0) = −1, y′(0) = 5

s2Y + s− 5 + 9Y =
10

s− 2
⇒ Y (s) =

10

(s− 2)(s2 + 9)
− s− 5

s2 + 9

(c) y′′ − 4y′ + 4y = t2et, y(0) = 0, y′(0) = 0

(s2 − 4s+ 4)Y =
2

(s− 1)3
⇒ Y (s) =

2

(s− 1)3(s− 2)2

10. Solve the given initial value problems using Laplace transforms:

(a) 2y′′ + y′ + 2y = δ(t− 5), zero initial conditions.

Y =
e−5s

2s2 + s+ 2
= e−5sH(s)

where

H(s) =
1

2s2 + s+ 2
=

1

2

1

s2 + 1
2
s+ 1

=
1

2

1(
s+ 1

4

)2
+ 15

16

=
1

2

4√
15

√
15
4(

s+ 1
4

)2
+ 15

16

Therefore,

h(t) =
2√
15

e−1/4 t sin

(√
15

4
t

)
And the overall solution is u5(t)h(t− 5)

(b) y′′ + 6y′ + 9y = 0, y(0) = −3, y′(0) = 10

s2Y + 3s− 10 + 6(sY + 3) + 9Y = 0 ⇒ Y = − 3s+ 8

(s+ 3)2

Partial Fractions:

− 3s+ 8

(s+ 3)2
= − 3

(s+ 3)
+

1

(s+ 3)2
⇒ y(t) = −3e−3t + te−3t
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(c) y′′ − 2y′ − 3y = u1(t), y(0) = 0, y′(0) = −1

Y = e−s
1

s(s− 3)(s+ 1)
+

1

(s+ 1)(s− 3)
= e−sH(s) +

1

4

1

s− 3
− 1

4

1

s+ 1

where

H(s) =
1

s(s− 3)(s+ 1)
= −1

3

1

s
+

1

12

1

s− 3
+

1

4

1

s+ 1

so that

h(t) = −1

3
+

1

12
e3t +

1

4
e−t

and the overall solution is:

y(t) =
1

4
e3t − 1

4
e−t + u1(t)h(t− 1)

(d) y′′ + 4y = δ(t− π
2
), y(0) = 0, y′(0) = 1

Y = e−π/2 s
1

s2 + 4
+

1

s2 + 4

Therefore,

y(t) =
1

2
sin(2t) + uπ/2(t)

1

2
sin(2(t− π/2))

(e) y′′ + y =
∞∑
k=1

δ(t− 2kπ), y(0) = y′(0) = 0. Write your answer in piecewise form.

Y (s) =
∞∑
k=1

e−2kπs
1

s2 + 1

Therefore, term-by-term,

y(t) =
∞∑
k=1

u2kπ(t) sin(t− 2πk) =
∞∑
k=1

u2πk(t) sin(t)

Piecewise,

y(t) =



0 if 0 ≤ t < 2π
sin(t) if 2π ≤ t < 4π

2 sin(t) if 4π ≤ t < 6π
3 sin(t) if 6π ≤ t < 8π

...
...

11. For the following, use Laplace transforms to solve, and leave your answer in the form of
a convolution:

(a) 4y′′ + 4y′ + 17y = g(t) y(0) = 0, y′(0) = 0

SOLUTION: First, note that

4s2 + 4s+ 17 = 4(s2 + s+ 17/4) = 4((s+ 1/2)2 + 4)
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Therefore,

Y (s) =
G(s)

4s2 + 4s+ 17
= G(s) · 1

8

2

(s+ 1
2
)2 + 22

Therefore,

y(t) = g(t) ∗ 1

8
e−t/2 sin(2t)

(b) y′′ + y′ + 5
4
y = 1− uπ(t), with y(0) = 1 and y′(0) = −1.

SOLUTION: Take the Laplace transform of both sides:

(s2Y − s+ 1) + (sY − 1) +
5

4
Y =

1

s
− e−πs

s

so that

Y (s) =
1− e−πs

s(s2 + s+ 5/4)
+

s

s2 + s+ 5/4

For the second term,

s

s2 + s+ 5/4
=

s

(s+ 1
2
)2 + 1

=
s+ 1

2

(s+ 1
2
)2 + 1

− 1

2

1

(s+ 1
2
)2 + 1

For the first term, treat it like: (
e−0s − e−πs

)
H(s)

where

H(s) =
1

s
· 1

s2 + s+ 5
4

=
1

s
· 1

(s+ 1
2
)2 + 1

so that
h(t) = 1 ∗ e−t/2 sin(t)

Therefore, the overall answer is:

y(t) = h(t)− uπ(t)h(t− π) + e−t/2
(

cos(t)− 1

2
sin(t)

)
12. Short Answer:

(a)
∫ ∞
0

sin(3t)δ(t− π

2
) dt = sin(3π/2) = −1, since

∫ ∞
0

f(t)δ(t− c) dt = f(c)

(b) Use Laplace transforms to solve the first order DE, thus finding which function has
the Dirac function as its derivative:

y′(t) = δ(t− c), y(0) = 0

SOLUTION:

sY = e−cs ⇒ Y =
e−cs

s

so that y(t) = uc(t). Therefore, the “derivative” of the Heaviside function is the
Dirac δ−function!
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(c) Use Laplace transforms to solve for F (s), if

f(t) + 2
∫ t

0
cos(t− x)f(x) dx = e−t

(So only solve for the transform of f(t), don’t invert it back).

F (s) + 2F (s)
s

s2 + 1
=

1

s+ 1
⇒ F (s)

(
(s+ 1)2

s2 + 1

)
=

1

s+ 1

so that

F (s) =
s2 + 1

(s+ 1)3

(d) In order for the Laplace transform of f to exist, f must be?

f must be piecewise continuous and of exponential order

13. Let f(t) = t and g(t) = u2(t).

(a) Use the Laplace transform to compute f ∗ g.

To use the table,

L(t ∗ u2(t)) =
1

s2
· e−2s

s
= e−2s

1

s3
= e−2sH(s)

so that h(t) = 1
2
t2. The inverse transform is then

u2(t)
1

2
(t− 2)2

(b) Verify your answer by directly computing the integral.

By direct computation, we’ll choose to ”flip and shift” the function t:

f ∗ g =
∫ t

0
(t− x)u2(x) dx

Notice that u2(x) is zero until x = 2, then u2(x) = 1. Therefore, if t ≤ 2, the
integral is zero. If t ≥ 2, then:∫ t

0
(t− x)u2(x) dx =

∫ t

2
t− x dx = tx− 1

2
x2
∣∣∣∣t
2

= t2 − 1

2
t2 − 2t+ 2 =

1

2
(t− 2)2

valid for t ≥ 2, zero before that. This means that the convolution is:

t ∗ u2(t) =
1

2
(t− 2)2u2(t)

14. If a0 = 1, determine the coefficients an so that

∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anx
n = 0

Try to identify the series represented by
∑∞
n=0 anx

n.
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SOLUTION: The recognition problem is a little difficult, but we should be able to get
the coefficients:

∞∑
k=0

[(k + 1)ak+1 + 2ak]x
k = 0 ⇒ ak+1 = − 2

k + 1
ak

Just doing the straight computations, we get:

y(x) = 1− 2x+ 2x2 − 4

3
x3 +

2

3
x4 − · · ·

To see the pattern, it is easiest to look at the general terms (Typically, I wouldn’t
ask for the recognition part on the exam, but you should be able to get the first few
computations, as we did above):

a1 = −2a0 = (−2)
1!
a0

a2 = −2
2
a0 = 2a0 = 4

2!
a0

a3 −2
3
a2 = −4

3
a0 = −8

3!
a0

...
...

The series is for e−2x =
∑∞
n=0

(−2)nxn
n!

15. Write the following as a single sum in the form
∑∞
k=2 ck(x− 1)k (with a few terms in the

front):
∞∑
n=1

n(n− 1)an(x− 1)n−2 + x(x− 2)
∞∑
n=1

nan(x− 1)n−1

In front of the second sum we have x2 − 2x, but we can’t bring that directly into the
sum since we have powers of (x− 1). But, we might recognize that:

x2 − 2x = (x2 − 2x+ 1)− 1 = (x− 1)2 − 1

Therefore, the second sum can be expanded into two sums:

((x− 1)2 − 1)
∞∑
n=1

nan(x− 1)n−1 = (x− 1)2
∞∑
n=1

nan(x− 1)n−1 −
∞∑
n=1

nan(x− 1)n−1 =

∞∑
n=1

nan(x− 1)n+1 −
∞∑
n=1

nan(x− 1)n−1

Now we have three sums to work with

∞∑
n=1

n(n− 1)an(x− 1)n−2 +
∞∑
n=1

nan(x− 1)n+1 −
∞∑
n=1

nan(x− 1)n−1

In the first sum, the first non-zero term has (x−1)0, the second sum begins with (x−1)2,
and the last sum starts with (x− 1)0. We could shift the second index to start at n = 0,
but then the sum begins with (x− 1)1. We’ll have to break off the constant terms from
the first two sums:

∞∑
n=1

n(n− 1)an(x− 1)n−2 = 2a2 +
∞∑
n=3

n(n− 1)(x− 1)n−2
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and similarly

−
∞∑
n=1

nan(x− 1)n−1 = −a1 −
∞∑
n=2

nan(x− 1)n−1

Now we can bring all three sums together. In the first sum, we’ll substitute k = n − 2
(or n = k + 2). In the middle sum, k = n + 1 (or n = k − 1), and in the third sum,
k = n− 1 (or n = k + 1). With these substitutions, we get:

2a2 − a0 +
∞∑
k=1

((k + 2)(k + 1)ak+2 + (k − 1)ak−1 − (k + 1)ak+1) (x− 1)k

NOTE: The question asked for the index to start at k = 2 instead of k = 1- It’s OK to
do it either way; mainly, I wanted to see you put the sums together as one.

16. Characterize ALL (continuous or not) solutions to

y′′ + 4y = u1(t), y(0) = 1, y′(0) = 1

SOLUTION: The idea behind this question is to get you to think about the kinds of
solutions we get from the Laplace transform. If we do not require y to be continuous,
then this DE is actually two differential equations:

y′′ + 4y = 0, y(0) = 1, y′(0) = 1 valid for t ≤ 1

And
y′′ + 4y = 1 y(1), y′(1) arbitrary , valid for t > 1

The general solution is then:

y(t) =

{
cos(2t) + 1

2
sin(2t) if t ≤ 1

c1 cos(2t) + c2 sin(2t) + 1
4

if t > 1

If we require y(t) to be continuous (a very common assumption), then we get the answer
that comes from using Laplace transforms. Writing the answer in piecewise form:

y(t) =

{
cos(2t) + 1

2
sin(2t) if t ≤ 1

−1
4

cos(2(t− 1)) + 1
4

if t > 1

17. Use the table to find an expression for L(ty′). Use this to convert the following DE into
a linear first order DE in Y (s) (do not solve):

y′′ + 3ty′ − 6y = 1, y(0) = 0, y′(0) = 0

SOLUTION: For the first part, use Table Entry 15. In particular,

L(tf(t)) = −F ′(s)

where, in our case, f(t) = y′(t), so that F (s) = sY − y(0). Therefore,

L(tf(t)) = −(Y − sY ′) = sY ′ − Y

Substituting this into the DE, we get:

Y ′ +

(
s2 − 3s− 6

3s

)
Y =

1

s
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18. Find the recurrence relation between the coefficients for the power series solutions to
the following:

(a) 2y′′ + xy′ + 3y = 0, x0 = 0.

Substituting our power series in for y, y′, y′′:

2
∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 + 3

∞∑
n=0

anx
n = 0

We want to write this as a single sum, with each index starting at the same value.
First we’ll simplify a bit:

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n +

∞∑
n=0

3anx
n = 0

Noting that in the second sum we could start at n = 0, since the first term (constant
term) would be zero anyway, we can start all series with a constant term:

∞∑
k=0

(2(k + 2)(k + 1)ak+2 + kak + 3ak)x
k = 0

From which we get the recurrence relation:

ak+2 = − k + 3

2(k + 2)(k + 1)
ak

(b) (1− x)y′′ + xy′ − y = 0, x0 = 0

Substituting our power series in for y, y′, y′′:

(1− x)
∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n = 0

We want to write this as a single sum, with each index starting at the same value.
First we’ll simplify a bit:

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

The two middle sums can have their respective index taken down by one (so that
formally the series would start with 0x0):

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

n(n− 1)anx
n−1 +

∞∑
n=0

nanx
n −

∞∑
n=0

anx
n = 0

Now make all the indices the same. To do this, in the first sum make k = n− 2, in
the second sum take k = n− 1. Doing this and collecting terms:

∞∑
k=0

((k + 2)(k + 1)ak+2 − (k + 1)kak+1 + (k − 1)ak)x
k = 0

So we get the recursion:

ak+2 =
(k + 1)k ak+1 − (k − 1)ak

(k + 2)(k + 1)
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(c) y′′ − xy′ − y = 0, x0 = 1

SOLUTION: Let y =
∞∑
n=0

an(x− 1)n so that

y′ =
∞∑
n=1

nan(x− 1)n−1 y′′ =
∞∑
n=2

n(n− 1)an(x− 1)n−2

Substituting these into the differential equation, we get

∞∑
n=2

n(n− 1)an(x− 1)n−2 − x
∞∑
n=1

nan(x− 1)n−1 −
∞∑
n=0

an(x− 1)n = 0

We need to bring the x into the sum, but we can only do that if we had x − 1.
Therefore, we re-write x as: x = (x− 1) + 1

∞∑
n=2

n(n− 1)an(x− 1)n−2 − [(x− 1) + 1]
∞∑
n=1

nan(x− 1)n−1 −
∞∑
n=0

an(x− 1)n = 0

The middle term is rewritten as:

−[(x− 1) + 1]
∞∑
n=1

nan(x− 1)n−1 = −
∞∑
n=1

nan(x− 1)n −
∞∑
n=1

nan(x− 1)n−1

Incorporating this sum into the whole gives us four sums now:

∞∑
n=2

n(n− 1)an(x− 1)n−2−
∞∑
n=1

nan(x− 1)n−
∞∑
n=1

nan(x− 1)n−1−
∞∑
n=0

an(x− 1)n = 0

The second sum needs to begin at n = 0 for our powers to all begin with (x− 1)0:

∞∑
n=2

n(n− 1)an(x− 1)n−2−
∞∑
n=0

nan(x− 1)n−
∞∑
n=1

nan(x− 1)n−1−
∞∑
n=0

an(x− 1)n = 0

In the first sum, take m = n − 2 (or n = m + 2), in the second sum, m = n and
in the third sum, m = n − 1, and in the fourth sum, m = n. Writing all sums in
terms of m, we get:

∞∑
m=0

(m+2)(m+1)am+2(x−1)m−
∞∑
m=0

mam(x−1)m−
∞∑
m=1

(m+1)am+1(x−1)m−
∞∑
m=0

am(x−1)m = 0

Write this as a single sum (I simplified the first and third together):∑
+m = 0∞ ((m+ 2)(m+ 1)am+2 − (m+ 1)am − (m+ 1)am+1) (x− 1)m = 0

Now we get the recurrence relation (you can write it using any index you like):

an+2 =
1

n+ 2
(an+1 + an) , for n = 0, 1, 2, 3, · · ·

19. Exercises with the table:
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(a) SOLUTION: Prove formula #6 using 4 and 11)

L(eat sin(bt)) = F (s− a)

where

F (s) = L(sin(bt)) =
b

s2 + b2
⇒ b

(s− a)2 + b2

Therefore,

L(eat sin(bt)) =
b

(s− a)2 + b2

(b) Show that you can use table entry 15 to find the Laplace transform of t2δ(t − 3)
(verify your answer using a property of the δ function).

SOLUTION: Using Entry 11, the Laplace transform of t2δ(t − 3) is the second
derivative of the Laplace transform of δ(t− 3). That is, using

F (s) = e−3s

then
L(t2δ(t− 3)) = F ′′(s) = 9e−3s

And this is the same as: ∫ ∞
0

e−stt2δ(t− 3) dt = 9e−3s

(c) Prove (using the definition of L) table entries 9, 10

SOLUTION: 9 is a special case of 10, so we prove 10 using the definition:

L(uc(t)f(t− c)) =
∫ ∞
0

e−stuc(t)f(t− c) dt =
∫ ∞
c

e−stf(t− c) dt

We want this answer to be the following (with a different variable of integration):

e−csF (s) = e−cs
∫ ∞
0

e−swf(w) dw =
∫ ∞
0

e−s(w+c)f(w) dw

We can connect the two by taking w = t−c (so that t = w+c), and then (remember
to change the bounds!):∫ ∞

c
e−stf(t− c) dt =

∫ ∞
0

e−s(w+c)f(w) dw

And we’re done.

(d) Prove (using the definition of L) a formula (similar to 14) for L(y′′′(t)).

SOLUTION: I wanted you to recall how we got those definitions in the past (inte-
grating by parts):

L(y′′′(t)) =
∫ ∞
0

e−sty′′′(t) dt

13



Integration by parts using a table:

+ e−st y′′′(t)
− −se−st y′′(t)
+ s2e−st y′(t)
− −s3e−st y(t)

⇒
(
e−st

(
y′′(t) + sy′(t) + s2y(t)

)∣∣∣∞
t=0

+ s3
∫ ∞
0

e−sty(t) dt

At infinity, these terms all go to zero (otherwise, the Laplace transform wouldn’t
exist), so we get:

s3 − (y′′(0) + sy′(0) + s2y(0)) = s3Y − s2y(0)− sy′(0)− y′′(0)

20. Find the first 5 terms of the power series solution to exy′′ + xy = 0 if y(0) = 1 and
y′(0) = −1.

Compute the derivatives directly, then (don’t forget to divide by n!):

y(x) = 1− x− 1

3!
x3 +

1

3!
x4 + . . .

21. Find the radius of convergence for the following series:

(a)
∞∑
n=1

√
nxn

SOLUTION:

lim
n→∞

√
n+ 1

n
|x| = |x|

So by the ratio test, the series will converge (absolutely) if |x| < 1 (so the radius is
1).

(b)
∞∑
n=1

(−2)n√
n+ 1

(x+ 3)n

SOLUTION: Simplifying the limit in the ratio test, we get

lim
n→∞

2

√
n

n+ 1
|x+ 3| = 2|x+ 3|

Therefore, by the ratio test, the series will converge absolutely if 2|x + 3| < 1, or
if |x + 3| < 1/2 (and this is our radius). For the interval of convergence, we have
to check the points x = −7/2 and x = −5/2 separately. For x = −7/2, the series
diverges (p−test), and for x = −5/2, the series converges by the alternating series
test.

NOTE: If you don’t recall those tests, you probably ought to review them, but I
won’t make you recall them for the exam this week.

(c)
∞∑
n=1

(−1)nn2(x+ 2)n

3n

SOLUTION: For the Ratio Test, first simplify the ratio:

(n+ 1)23n

n23n+1
|x+ 2| =

(
n+ 1

n

)2 |x+ 2|
3
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The limit is |x+ 2|/3, so the radius of convergence is 3. For extra practice, we can
also find the interval of convergence. We need to test the endpoints:

For x = −2− 3 = −5: The series becomes

∞∑
n=1

(−1)nn2(−3)n

3n
=
∞∑
n=1

n2

which is divergent. A similar computation shows divergence at x = −2 + 3 = 1.

(d)
∞∑
n=1

(3x− 2)n

n5n

SOLUTION: The Ratio Test simplifies to:

1

5
lim
n→∞

n

n+ 1
|3x− 2| = |3x− 2|

5

To converge absolutely, |3x− 2| < 5. To get the radius of convergence, we need to
have the form |x− a| < ρ, so in this case, we simplify to get:

3
∣∣∣∣x− 2

3

∣∣∣∣ < 5 ⇒
∣∣∣∣x− 2

3

∣∣∣∣ < 5

3

Now we have to check the endpoints separately, which are x = −1 and x = 7/3:

• At x = −1, the sum becomes:

∞∑
n=1

(−5)n

n5n
=
∞∑
n=1

(−1)n

n

This is an alternating harmonic series, which converges (but not absolutely).

• At x = 7/3, the sum becomes a harmonic series, which diverges.

The interval of convergence is: [−1, 7
3
)
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