\qquad

Show all your work! You may not use your text, colleagues or a calculator. A table of Laplace transforms and the Poincare Diagram is provided.

1. Short Answer:
(a) True or False (give a short reason): The solution to $y^{\prime}=f(y)$ may be periodic.
(b) Evaluate the integral: $\int_{0}^{5} \delta(t-2)+3 u_{4}(t) d t$
(c) Given the system below, convert to a second order DE (do not solve the DE):
$x_{1}^{\prime}=2 x_{1}+x_{2}$
$x_{2}^{\prime}=x_{1}+2 x_{2}$
2. Short Answer
(a) Solve: $y^{\prime \prime}+4 y^{\prime}+4 y=0$
(b) Solve: $y^{\prime \prime}+2 y^{\prime}+5 y=0$
(c) Label each of the previous two problems as: Underdamped, Overdamped, or Critically Damped.
3. Give your (final) ansatz for the particular solution to the following using the Method of Undetermined Coefficients. Do NOT actually find the coefficients!
(a) $y^{\prime}-5 y=t^{2}$
(b) $y^{\prime \prime}-2 y^{\prime}+5 y=t \mathrm{e}^{t} \sin (2 t)$
4. Consider the system: $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{rr}-1 & 1 \\ \alpha & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Using the Poincaré Diagram (you might sketch it), describe how changing α changes the classification of the origin.
5. Find the eigenvalues and eigenvectors for the matrix $\left[\begin{array}{rr}7 & 4 \\ -3 & -1\end{array}\right]$
6. Consider the system: $\begin{aligned} & x^{\prime}=2 x+6 y \\ & y^{\prime}=2 x-2 y\end{aligned}$
(a) Find the general solution.
(b) Find the particular solution with initial value $(1,3)$.
7. Laplace Transforms:
(a) Find the Laplace transform of the solution, $Y(s)$ (do not solve for $y(t)$!)

$$
y^{\prime \prime}-2 y^{\prime}+y=g(t) \quad y(0)=1, \quad y^{\prime}(0)=2, \quad \text { where } g(t)=\left\{\begin{aligned}
t / 2 & \text { if } 0 \leq t<2 \\
1 & \text { if } t \geq 2
\end{aligned}\right.
$$

(b) Compute the inverse Laplace transform of $\frac{\mathrm{e}^{-3 s}(s+1)}{s^{2}+4 s+6}$
8. A tank originally contains 100 gallons of fresh water. Water containing $3 / 5 \mathrm{lb}$ of salt per gallon is poured into the tank at a rate of $5 \mathrm{gal} / \mathrm{min}$, and the mixture is pumped out at $7 \mathrm{gal} / \mathrm{min}$. Write an IVP modeling the amount of salt at time t (do not solve it!).
9. Find the general solution: $\frac{d y}{d t}-\frac{2}{t} y=t^{3} \mathrm{e}^{t}$
10. Find the radius of convergence for the power series: $\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$
11. Write the power series of the solution, $y(x)$, centered at $x_{0}=0$, up to and including the x^{5} term (use the derivatives of y directly).

$$
y^{\prime \prime}-2 x^{2} y^{\prime}+y=0 \quad y(0)=1, \quad y^{\prime}(0)=1
$$

