\qquad

Show all your work! You may not use your text, colleagues or a calculator. A table of Laplace transforms and the Poincare Diagram is provided.

1. Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ for the given matrix A :
(a) $A=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & -1 \\ 5 & -3\end{array}\right]$
2. Convert the following system to an equivalent 2 d order DE :

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
-1 & -4 \\
1 & -1
\end{array}\right] \mathbf{x}
$$

3. Convert the following 2 d order DE to an equivalent system of first order equations (do not solve): $y^{\prime \prime}+3 y^{\prime}+5 y=0$
4. Find the radius of convergence for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n(n+2)}$
5. Find the recurrence relation between the coefficients of the power series solution to the following at the given value of x_{0} :

$$
x y^{\prime \prime}+y^{\prime}+x y=0, \quad x_{0}=1
$$

6. Solve the following for $Y(s)$ (the Laplace transform of $y(t)$), but do NOT invert!

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\cos (3 t)+\delta(t-2) \quad y(0)=1, y^{\prime}(0)=2
$$

7. Invert the Laplace transform: $\frac{\mathrm{e}^{-2 s}-\mathrm{e}^{-3 s}}{2 s^{2}+s+2}$
8. Guess the final form of the particular solution for each DE using the Method of Undetermined Coefficients (do NOT solve for the coefficients)
(a) $y^{\prime \prime}+3 y^{\prime}=2 t^{4}+t^{2} \mathrm{e}^{-3 t}+\sin (3 t)$
(b) $y^{\prime \prime}+y=t(1+\sin (t))$
9. If y_{1}, y_{2} are a fundamental set of solutions to $t^{2} y^{\prime \prime}-2 y^{\prime}+(3+t) y=0$, and if $W\left(y_{1}, y_{2}\right)(2)=3$, then find the value of $W\left(y_{1}, y_{2}\right)(4)$.
10. A spring with a mass of 3 kg is held stretched 0.6 m beyond its natural length by a force of 20 N . If the spring begins at its equilibrium position but a push gives it an initial velocity of $1.2 \mathrm{~m} / \mathrm{s}$, find the IVP modeling the position of the mass at time t (assume no damping). Do NOT solve.
11. A tank initially contains 10 kg of salt in a tank that contains 100 gallons of brine. Brine is flowing into the tank at a rate of 5 gallons per minute, and contains 2 kg of salt per gallon. The well mixed brine is pumped out of the tank at a rate of 6 gallons per minute. Write the IVP that gives the amount of salt in the tank at time t (do NOT solve).
12. Solve:
(a) $\left(9 x^{2}+y-1\right) d x-(4 y-x) d y=0$ with $y(1)=3$.
(b) $y^{\prime}=2 x /\left(y+x^{2} y\right)$
(c) $t y^{\prime}-y=t^{2} \mathrm{e}^{-t}, t>0$.
13. Consider the system: $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\alpha & 1 \\ 2 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Using the Poincaré Diagram (you might sketch it), describe how changing α changes the classification of the origin.

