Group Practice

Find the general form of the solution to the corresponding differential equation:

1. $4 y^{\prime \prime}+4 y^{\prime}+y=0$ Complete the square: $4 r^{2}+4 r+1=0$ so $4\left(r^{2}+r+1 / 4\right)=4(r+1 / 2)^{2}=0$ (OR: $\left.(2 r+1)^{2}=0\right)$, and the general solution is $y=\mathrm{e}^{-t / 2}\left(C_{1}+C_{2} t\right)$
2. $y^{\prime \prime}+4 y^{\prime}+13=0$ Complete the square: $r^{2}+4 r+13=0$ so $r^{2}+4 r+4+9=0,(r+2)^{2}=-9$ so $r=-2 \pm 3 i$, and the general solution is $y=\mathrm{e}^{-2 t}\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right)$
3. $y^{\prime \prime}+y^{\prime}-2 y=0$ Factor: $r^{2}+r-2=0$ so $(r+2)(r-1)=0$, so the general solution is $y=C_{1} \mathrm{e}^{-2 t}+C_{2} \mathrm{e}^{t}$
4. $y^{\prime \prime}+2 y^{\prime}+y=0$ Factor: $r^{2}+2 r+1=0$ so $(r+1)^{2}=0$, so the general solution is $\mathrm{e}^{-t}\left(C_{1}+C_{2} t\right)$
5. $3 y^{\prime \prime}+2 y^{\prime}+y=0$ Complete the square or use the quadratic formula: $3 r^{2}+2 r+1=0$ $\Rightarrow \quad r=\frac{-1 \pm \sqrt{2} i}{3}$ so the general solution is $y=\mathrm{e}^{-t / 3}\left(C_{1} \cos \left(\frac{\sqrt{2}}{3} t\right)+C_{2} \sin \left(\frac{\sqrt{2}}{3} t\right)\right)$

Find the second solution using W

Use the Wronskian to find the second solution, given that

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0 \quad y_{1}(t)=t^{2}
$$

The idea is that we compute $W\left(y_{1}, y_{2}\right)(t)$ two ways (one way using the definition, the second using Abel's Theorem), then set them equal. This gives a differential equation for y_{2} that we can solve.

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
t^{2} & y_{2} \\
2 t & y_{2}^{\prime}
\end{array}\right|=t^{2} y_{2}^{\prime}-2 t y_{2} \quad W\left(y_{1}, y_{2}\right)(t)=C \mathrm{e}^{-\int-4 / t d t}=C t^{4}
$$

Therefore,

$$
t^{2} y_{2}^{\prime}-2 t y_{2}=C t^{4} \quad \Rightarrow \quad y_{2}^{\prime}-\frac{2}{t} y_{2}=C t^{2}
$$

The integrating factor is t^{-2}, so

$$
\left(y_{2} / t^{2}\right)^{\prime}=C \quad \Rightarrow \quad y_{2} / t^{2}=C t+D \quad \Rightarrow \quad y_{2}=C t^{3}+D t^{2}
$$

This is a linear combination of t^{2} and t^{3}. We already have t^{2}, so we take $y_{2}=t^{3}$.

