
Lines of Best Fit: Linear Programming

Doug Hundley
Whitman College

October 11, 2005

We consider constructing the line of best fit using errors other than the standard least
squares error. In particular, we consider what line is obtained by using the uniform norm and
the sum of absolute values. These are particularly useful as case studies in how to construct
linear programming problems.

Before we begin, let’s get some intuition about these measures of error.

1 The mean, the median and optimization

Let {x1, x2, . . . , xn} be a set of n real numbers.

Exercise: Define E(m) =
∑n

i=1(m − xi)
2. Show, using calculus, that the number m that

minimizes E is given by the mean of the data set.

Absolute Value and the Derivative

We know that, if f(x) = |x|, then the derivative of f can be written as:

f ′(x) =

{
−1 if x < 0

1 if x > 0
=

x

|x|
.
= signum(x)

Similarly, if f(m) = |m− xi| (xi is a real number), then

df

dm
=

{
−1 if m < xi

1 if m > xi

Continuing, if f(m) = |m − x1| + |m − x2|, where x1 < x2, then we can rewrite the absolute
value as:

f(m) =

(m− x1) + (m− x2) if m ≥ x2

(m− x1)− (m− x2) if x1 ≤ m < x2

−(m− x1)− (m− x2) if m < x1

⇒ df

dm
=

2 if m > x2

0 if x1 < m < x2

−2 if m < x1

And another example, since the derivative changes slightly with an odd number of points:
f(m) = |m− x1|+ |m− x2|+ |m− x3|, with x1 < x2 < x3:

df

dm
=

3 if m > x3

1 if x2 < m < x3

−1 if x1 < m < x2

−3 if m < x1

1

In this last case, we might define the derivative at x2 to be zero, since that is where f ′ jumps
from 1 to −1.

Exercise: Extend the preceding discussion to show that, given {x1, x2, . . . , xn} with x1 <
x2 < . . . < xn, then the median of the data minimizes the error:

E(m) =
n∑

i=1

|m− xi|

Hint: Consider dE
dm

in some sample intervals. It might be helpful to consider the cases where
n is even, then when n is odd.

Minimize the Maximum

In this case, we want to explore the error we get by using the ∞−norm,

E(m) = max
1≤i≤n

|m− xi|

Before continuing, you might first consider the graphs of |m− xi|. They are all “V-shaped”,
with the vertex at (xi, 0). In particular, plot these by hand for three xi so that x1 < x2 < x3.
You should convince yourself that the maximum will be the line −(m− x3) until it intersects
with the line m− x1, so that E itself has a “V-shaped” graph. By solving for the vertex, you
should find that the m that minimizes this error is m = x1+x3

2
.

Given a set of ordered n real numbers, use the preceding discussion to argue that the m

that minimizes E(m) is given by m =
x1 + xn

2
.

2

2 Uniform Norm

In this case, let the error function be defined by:

E(m, b) = max
i

|εi| .
= εmax

By the definition of the max, we have the n constraints:

|εi| ≤ εmax, i = 1..n

which could be expressed using εi = yi −mxi − b:

|yi −mxi − b| ≤ εmax, i = 1..n

This is actually two inequalities per data point:

−εmax ≤ yi −mxi − b ≤ εmax, i = 1..n

so that, given n data points, there will be 2n constraints, each pair of which will need to be
written as:

mxi + b− εmax ≤ yi

−mxi − b− εmax ≤ −yi

The unknowns here are the εmax, m, b. We rewrite everything now in terms of a linear
programming problem, where the objective function is explicit in terms of the unknowns:

minimize 0 ·m + 0 · b + εmax s.t.

x1 1 −1
x2 1 −1

...
...

xn 1 −1
−x1 −1 −1
−x2 −1 −1

...
...

−xn −1 −1

 m
b

εmax

 ≤

y1

y2
...

yn

−y1

−y2
...

−yn

In the Matlab implementation, we will want the program to automatically construct the

matrix A and vector b for the linprog function. This can be quickly done using the following:

function [f,fopt]=unifbestline(x,y)

n=length(x);

A=zeros(2*n,3); %Just sets up space for A

b=zeros(2*n,1);

A(1:n,1)=x(:);

A(n+1:2*n,1)=-x(:);

A(1:n,2)=ones(n,1);

A(n+1:2*n,2)=-ones(n,1);

3

A(:,3)=-ones(2*n,1);

b(1:n)=y(:);

b(n+1:2*n)=-y(:);

c=[0,0,1];

[f,fopt]=linprog(c,A,b);

%Plotting routine:

t=linspace(min(x),max(x));

yt=f(0)*t+f(1);

plot(x,y,’ro’,t,yt,’k-’);

The following script file will use our previous M-file linreg written for the least squares
error and will compare the lines from the least squares versus the uniform norm:

%Script file to plot and compute errors for the lines of best fit using

%least squares and the uniform norm.

x=[10 20 30 40 50 60 70 80];

y=[25 70 380 550 610 1220 830 1450];

n=length(x);

[f,fopt]=unifbestline(x,y);

clf;

A=linreg2(x,y)

clf;

%Set up the plots:

t=linspace(min(x),max(x)); yt1=A.m*t+A.b; yt2=f(1)*t+f(2);

plot(x,y,’ro’,t,yt1,’k-’,t,yt2,’b-.’);

legend(’Data’,’Least Squares’,’Uniform Norm’);

%List the epsilons as an array:

eps1=abs(y(:)-A.m*x(:)-A.b*(ones(n,1)));

eps2=abs(y(:)-f(1)*x(:)-f(2)*ones(n,1));

[x(:),eps1,eps2]

This returns the line:
y = 15.20x + 37.00

for the uniform error, and
y = 19.47x− 234.3

for the least squares error.
Here is the array of errors (the first column is the data in x, the second column is the εi

for the least squares error, and the third column is the εi for the uniform error.

4

Data: Squares: Uniform:

10.0000 64.5833 164.0000

20.0000 85.1190 271.0000

30.0000 30.1786 113.0000

40.0000 5.4762 95.0000

50.0000 129.2262 187.0000

60.0000 286.0714 271.0000

70.0000 298.6310 271.0000

80.0000 126.6667 197.0000

Figure 1: Comparing the Lines of Best Fit

5

3 The 1-norm

Using the 1−norm, we have an error function:

E(m, b) =
n∑

i=1

|εi|

where again the εi = yi −mxi − b.
The objective function for the linear program must be linear (and not involve the absolute

value function). We get around this by creating a set of n new variables, ai, where

ai = |εi| = |yi −mxi − b|

Here’s the first key point for this problem: We will have an objective function with 2n + 2
variables. They are:

x = [m, b, ε1, . . . , εn, a1, . . . , an]T

and our objective function will be cTx, where

c = [0, 0, 0, 0, . . . 0︸ ︷︷ ︸, 1, 1, . . . 1︸ ︷︷ ︸]
Note the order in which the variables appear- That will be consistent in what is to follow.
The braces are grouping the n constants for the εi, and the n constants for the ai together.

The constraints will give the required relationships between these variables, and we will
minimize the sum of the ai.

We will loosen the definition of the ai’s somewhat so that:

εi ≤ ai AND − εi ≤ ai

This will give us 2n inequality constraints. This is imposed in Matlab by the matrix inequality
Ax ≤ b. In this case, the size of A will be 2n×2n+2, the size of the unknown x is 2n+2×1,
and the size of b is 2n× 1. The row of A corresponding to the constraint

ε1 − a1 ≤ 0 ⇒
[
0 0 1 0 0 . . . 0︸ ︷︷ ︸ −1 0 . . . 0︸ ︷︷ ︸

]
where the braces are grouping the coefficients for εi and ai together respectively. Thus, taken
together, the inequality constraints give a matrix A of the form (the separators are there just
for easier reading):

A =

0 0 1 0 . . . 0 −1 0 . . . 0
0 0 0 1 . . . 0 0 −1 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 0 0 . . . 1 0 0 . . . −1
0 0 −1 0 . . . 0 −1 0 . . . 0
0 0 0 −1 . . . 0 0 −1 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 0 0 . . . −1 0 0 . . . −1

.
=

[
0 I −I
0 −I −I

]

6

Additionally, we will have the following equality constraints:

εi = yi −mxi − b or mxi + b + εi = yi

Writing these in matrix form Aeqx = beq (NOTE: We need to keep the unknown vector x
with length 2n + 2 even though we’re only actually using the first n + 2. This implies that
Aeq has size n× 2n + 2.):

x1 1 1 0 . . . 0 0 . . . 0
x2 1 0 1 . . . 0 0 . . . 0

...
...

...
...

. . .
...

...
. . .

...
xn 1 0 0 . . . 1 0 . . . 0

m
b
ε1
...
εn

a1
...

an

=

y1

y2
...

yn

Although these matrices may look complex, look at the patterns- they will be easy to construct
in Matlab, and a function to accomplish this follows:

function [f,fopt]=onenormline(x,y)

n=length(x);

%Initialize the b’s

b=zeros(2*n,1);

beq=y(:);

%Set up the matrices:

Z=zeros(n,2);

I=eye(n);

A=[Z,I,-I;Z,-I,-I];

Aeq=[x(:), ones(n,1), I, zeros(n,n)];

%The constant vector for the objective function:

c=[0;0; zeros(n,1); ones(n,1)];

[f,fopt]=linprog(c,A,b,Aeq,beq);

%Plotting routine:

t=linspace(min(x),max(x));

yt=f(1)*t+f(2);

plot(x,y,’ro’,t,yt,’k-’);

Changing our comparison script slightly:

x=[10 20 30 40 50 60 70 80];

y=[25 70 380 550 610 1220 830 1450];

7

n=length(x);

[f,fopt]=unifbestline(x,y);

clf;

A=linreg2(x,y)

clf;

[f2,fopt2]=onenormline(x,y);

clf;

%Set up the plots:

t=linspace(min(x),max(x));

yt1=A.m*t+A.b;

yt2=f(1)*t+f(2);

yt3=f2(1)*t+f2(2);

plot(x,y,’ro’,t,yt1,’k-’,t,yt2,’b-.’,t,yt3,’k:’);

legend(’Data’,’Least Squares’,’Uniform Norm’,’1-Norm’);

%List the epsilons as an array:

eps1=abs(y(:)-A.m*x(:)-A.b*(ones(n,1)));

eps2=abs(y(:)-f(1)*x(:)-f(2)*ones(n,1));

eps3=abs(y(:)-f2(1)*x(:)-f2(2)*ones(n,1));

[x(:),eps1,eps2,eps3]

Gives a line of best fit of y = 20.4966x− 254.34, and the Matlab output is on the next page.
In particular, consider the residuals.

The following is a summary of the overall error for each of the three lines under each of
the three methods. As expected, each method minimizes its error value:∑ |εi|

∑
ε2
i max |εi|

1-Norm 1015 226010 350.43
Least Square 1026 216120 298.63
Unif Norm 1569 342790 271

8

10.0000 64.5833 164.0000 74.3751

20.0000 85.1190 271.0000 85.5913

30.0000 30.1786 113.0000 19.4424

40.0000 5.4762 95.0000 15.5239

50.0000 129.2262 187.0000 160.4903

60.0000 286.0714 271.0000 244.5434

70.0000 298.6310 271.0000 350.4229

80.0000 126.6667 197.0000 64.6107

Figure 2: Comparison of lines of best fit using various measures of error.

9

4 The Median-Median Line

The median-median line is another technique for finding a line through data. It can be easily
understood and easily constructed without regards to minimization or linear programming
(we include it here for the sake of comparing it to our other techniques).

It should be used when there is a lot of noise and a lot of outliers in the data, as the
median is very resistant to outliers.

In this case, order your data (using ascending x), and form 3 groups- Low, Middle, High.
The groups should each have approximately the same number of data points; for example, if
n is divisible by three, have three equally spaced groups. If there is 1 left over, put it in the
middle group, and if there are two left over, make the middle group have one less than the
low and high groups.

For each of the three groups, find the median values of x and y. Form the equation of the
line through the high and low group median points. Shift this line 1/3 of the way towards the
middle median point.

In Matlab, this is done by the following script file (most of the code is in splitting the data
into the three groups):

function [m,b,resids]=medmedline(x,y);

x=x(:); y=y(:);

n=length(x);

[x,idx]=sort(x);

y=y(idx);

if rem(n,3)==0 %Three equal size groups

Low=[x(1:(n/3)),y(1:n/3)];

Middle=[x((n/3)+1:2*(n/3)),y((n/3)+1:2*(n/3))];

High=[x(2*n/3+1:n),y(2*n/3+1:n)];

elseif rem(n,3)==1 %Make the middle group 1 bigger

NumPts=floor(n/3);

Low=[x(1:NumPts),y(1:NumPts)];

Middle=[x(NumPts+1:2*NumPts+1),y(NumPts+1:2*NumPts+1)];

High=[x(2*NumPts+2:n),y(2*NumPts+2:n)];

else %High and low groups have 1 more than middle

NumPts=ceil(n/3); %Number in Low and High groups

Low=[x(1:NumPts),y(1:NumPts)];

Middle=[x(NumPts+1:2*NumPts-1),y(NumPts+1:2*NumPts-1)];

High=[x(2*NumPts:n),y(2*NumPts:n)];

end

%Form the median points:

LowMed=median(Low);

MidMed=median(Middle);

HiMed=median(High);

%Form the line between the low and high groups:

m1=(HiMed(2)-LowMed(2))/(HiMed(1)-LowMed(1));

10

b1=-m1*LowMed(1)+LowMed(2);

ytemp=m1*MidMed(1)+b1;

shift=(1/3)*(MidMed(2)-ytemp);

m=m1;

b=b1+shift;

resids=y-m*x-b;

t=linspace(min(x),max(x));

yt=m*t+b;

plot(x,y,’*’,t,yt,’k-’);

11

