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C H A P T E R 2

Qualitative Modeling with
Functions

It is often surprising that very simple mathematical modeling ideas can produce
results with added value. Indeed, the solutions may be elegant and provide quality
of understanding that obviates further exploration by more technical or complex
means. In this chapter we explore a few simple approaches to qualitatively modeling
phenomena with well-behaved functions.

2.1 MODELING SPECIES PROPAGATION

This problem concerns the factors that influence the number of species existing on
an island. The discussion is adapted from [1].

One might speculate that factors affecting the number of species could include

• Distance of the island from the mainland

• Size of the island

Of course limiting ourselves to these influences has the dual effect of making a
tractable model that needs to be recognized as omitting many possible factors.

The number of species may increase due to new species discovering the island
as a suitable habitat. We will refer to this as the migration rate. Alternatively,
species may become extinct due to competition. We will refer to this as the ex-

tinction rate. This discussion will be simplified by employing an aggregate total for
the number of species and not attempting to distinguish the nature of each species,
i.e., birds versus plants.

Now we propose some basic modeling assumptions that appear reasonable.

The migration rate of new species decreases as the number of species on

the island increases.

The argument for this is straight forward. The more species on an island the smaller
the number of new species there is to migrate. See Figure 2.1 (a) for a qualitative
picture.

The extinction rate of species increases as the number of species on the

island increases.

Clearly the more species there are the more possibilities there are for species to die
out. See Figure 2.1 (b) for a qualitative picture.

If we plot the extinction rate and the migration rate on a single plot we
identify the point of intersection as an equilibrium, i.e., the migration is exactly
offset by the extinction and the number of species on the island is a constant. We
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FIGURE 2.1: Qualitative form of the migration and extinction curves.

will assume in this discussion that we are considering islands for which the number
of species is roughly constant over time, i.e., they are in a state of equilibrium.

Now we consider whether this simple model provides any added value. In
particular, can it be used to address our questions posed at the outset.

First, what is the effect of the distance of the island from the mainland on the
number of bird species? One can characterize this effect by a shift in the migration
curve. The further the island is away from the mainland, the less likely a species
is to successfully migrate. Thus the migration curve is shifted down for far islands
and shifted up for near islands. Presumably, this distance of the island from the
mainland has no impact on the extinction curve. Thus, by examining the shift in
the equilibrium, we may conclude that the number of species on an island decreases
as the island’s distance from the mainland increases. See Figure 2.2.

Note in this model we assume that the time-scales are small enough that new
species are not developed via evolution. While this may seem reasonable there
is evidence that in some extreme climates, such as those found in the Galapagos
Islands, variation may occur over shorter periods. There have been 140 different
species of birds

2.2 SUPPLY AND DEMAND

In this section we sketch a well-known concept in economics, i.e., supply and de-
mand. We shall see that relatively simple laws, when taken together, afford inter-
esting insight into the relationship between producers and consumers. Furthermore,
we may use this framework to make predictions such as

• What is the impact of a tax on the sale price?

• What is the impact an increase in employees wages on sales price? Can the
owner of the business pass this increase on to the consumer?

Law of Supply: An increase in the price of a commodity will result in
an increase of the amount supplied.
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FIGURE 2.2: The effect of distance of the island from the mainland is to shift the migration curve.
Consequently the equilibrium solution dictates a smaller number of species will be supported for islands
that are farther away from the mainland.

Law of Demand: If the price of a commodity increases, then the quantity
demanded will decrease.

Thus, we may model the supply curve qualitatively by a monotonically in-
creasing function. For simplicity we may assume a straight line with positive slope.
Analogously, we may model the demand curve qualitatively by a monotonically
decreasing function, which again we will take as a straight line.

A flat demand curve may be interpreted as consumers being very sensitive to
the price of a commodity. If the price goes up just a little, then the quantity in
demand goes down significantly. Steep and flat supply and demand curves all have
similar qualitative interpretations (see the problems).

2.2.1 Market Equilibrium

Given a supply curve and a demand curve we may plot them on the same axis
and note their point of intersection (q∗, p∗). This point is special for the following
reason:

• The seller is willing to supply q∗ at the price p∗

• The demand is at the price p∗ is q∗

So both the supplier(s) and the purchaser(s) are happy economically speaking.
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FIGURE 2.3: (a) Qualitative form of supply and demand curves.
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2.2.2 Market Adjustment

Of course, in general markets do not exist in the perfect economic utopia described
above. We may model the market adjustment as a sequence of points on the demand
and supply curves.

Based on market research it is estimated that consumers will demand a quan-
tity q1 at a price p1. The supply and demand curves will permit a prediction of
how the market will evolve. For simplicity, we will assume that the initial point
(q1, p1) is on the demand curve to the right of the equilibrium point.

At the price p1 the supplier looks to his supply curve and proposes to sell a
reduced quantity q2. Thus we move from right to left horizontally. Note that moving
vertically to the supply curve would not make sense as this would correspond to
offering the quantity q1 at an increased price. These goods will not sell at this price.

From the point (q1, p2) the consumer will respond to the new reduced quantity
q2 by being willing to pay more. This corresponds to moving vertically upward to
the new point (q2, p2) on the supply curve.

Now the supplier adjusts to the higher price being paid in the market place
by increasing the quantity produced to q3. This process then continues, in theory,
until an equilibrium is reached. It is possible that this will never happen, at least
not without a basic adjustment to the shape of either the supply of demand curves,
for example through cost cutting methods such as improved efficiency, or layoffs.

2.2.3 Taxation

The effect of a new tax on a product is to shift the demand curve down because
consumers will not be willing to pay as much for the product (before the tax).
Note that this leads to a new equilibrium point which reduces the price paid to
the seller per item and reduces the quantity supplied by the producer. Thus one
may conclude from this picture that the effect of a tax on alcohol is to reduce
consumption as well as profit for the supplier. See Figure 2.5.

2.3 MODELING WITH PROPORTION AND SCALE

In the previous sections we have considered how simple functions may be employed
to qualitatively model various situations and produce added value. Now we turn to
considerations that assist in determining the nature of these functional dependencies
in more complex terms.

2.3.1 Proportion

If a quantity y is proportional to a quantity x then we write

y ∝ x

by which is meant

y = kx

for some constant of proportionality k.
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EXAMPLE 2.1

In 1678 Robert Hooke proposed that the restoring force F of a spring is proportional
to its elongation e, i.e.,

F ∝ e

or,

F = ke

where k is the stiffness of the spring.

Note that the property of proportionality is symmetric, i.e.,

y ∝ x → x ∝ y (2.1)

and transitive, i.e.,

y ∝ x and z ∝ y → z ∝ x (2.2)

EXAMPLE 2.2

If y = kx + b where k, b are constants, then

y 6∝ x

but

y − b ∝ x

Inverse proportion. If y ∝ 1/x then y is said to be inversely proportional to
x.

EXAMPLE 2.3

If y varies inversely as the square-root of x then

y =
k√
x

Joint Variation. The volume of a cylinder is given by

V = πr2h

where r is the radius and h is the height. The volume is said to vary jointly with
r2 and h, i.e.,

V ∝ r2 and V ∝ h
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EXAMPLE 2.4

The volume of a given mass of gas is proportional to the temperature and inversely
proportional to the pressure, i.e., V ∝ T and V ∝ 1/P , or,

V = k
T

P

EXAMPLE 2.5

Frictional drag due to the atmosphere is jointly proportional to the surface area S
and the velocity v of the object.

Superposition of Proportions. Often a quantity will vary as the sum of pro-
portions.

EXAMPLE 2.6

The stopping distance of a car when an emergency situation is encountered is the
sum of the reaction time of the driver and the amount of time it takes for the breaks
to dissipate the energy of the vehicle. The reaction distance is proportional to the
velocity. The distance travelled once the breaks have been hit is proportional to
the velocity squared. Thus,

stopping distance = k1v + k2v
2

EXAMPLE 2.7

Numerical error in the computer estimation of the center difference formula for the
derivative is given by

e(h) =
c1

h
+ c2h

2

where the first term is due to roundoff error (finite precision) and the second term
is due to truncation error. The value h is the distance δx in the definition of the
derivative.

Direct Proportion. If
y ∝ x

we say y varies in direct proportion to x. This is not true, for example, if y ∝
r2. On the other hand, we may construct a direct proportion via the obvious
change of variable x = r2. This simple trick always permits the investigation of the
relationship between two variables such as this to be recast as a direct proportion.
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2.3.2 Scale

Now we explore how the size of an object can be represented by an appropriate
length scale if we restrict our attention to replicas that are geometrically similar.
For example, a rectangle with sides l1 and w1 is geometrically similar to a rectangle
with sides l2 and w2 if

l1
l2

=
w1

w2

= k (2.3)

As the ratio κ = l1/w1 characterizes the geometry of the rectangle it is referred
to as the shape factor. If two objects are geometrically similar, then it can be
shown that they have the same shape factor. This follows directly from multiplying
Equation (2.3) by the factor l2/w1, i.e.,

l1
w1

=
l2
w2

= k
l2
w1

Characteristic Length.
Characteristic length is useful concept for characterizing a family of geomet-

rically similar objects. We demonstrate this with an example.
Consider the area of a rectangle of side l and width w where l and w may

vary under the restriction that the resulting rectangle be geometrically similar to
the rectangle with length l1 and width w1. An expression for the area of the varying
triangle can be simplified as a consequence of the constraint imposed by geometric
similarity. To see this

A = lw

= l(
w1l

l1
)

= κl2

where κ = w1/l1, i.e., the shape factor. See Figure 2.7 for examples of characteristic
lengths for the rectangle.

EXAMPLE 2.8

Watering a farmer’s rectangular field requires an amount of area proportional to
the area of the field. If the characteristic length of the field is doubled, how much
additional water q will be needed, assuming the new field is geometrically similar
to the old field? Solution: q ∝ l2, i.e., q = kl2. Hence

q1 = kl21

q2 = kl22

Taking the ratio produces
q1

q2

=
l21
l22
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FIGURE 2.7: The height l1, the width l2 and the diagonal l3 are all characteristic lengths for the
rectangle.

Now if q2 = 100 acre feet of water are sufficient for a field of length l2 = 100, how
much water will be required for a field of length l1 = 200? Sol.

q1 = q2

l21
l22

= 100
2002

1002
= 400 acre feet ¤

EXAMPLE 2.9

Why are gymnasts typically short? It seems plausible that the ability A, or natural
talent, of gymnast would be proportional to strength and inversely proportional to
weight, i.e.,

A ∝ strength

and

A ∝ 1

weight

and taken jointly

A ∝ strength

weight

One model for strength is that the strength of a limb is proportional to the cross-
sectional area of the muscle. The weight is proportional to the volume (assuming
constant density of the gynmast). Now, assuming all gymnasts are geometrically
similar with characteristic length l

strength ∝ muscle area ∝ l2
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and
weight ∝ volume ∝ l3

so the ability A follows

A ∝ l2

l3
∝ 1

l

So shortness equates to a talent for gymnastics. This problem was originally intro-
duced in [2]. ¤

EXAMPLE 2.10

Proportions and terminal velocity. Consider a uniform density spherical object
falling under the influence of gravity. The object will travel will constant (terminal)
velocity if the accelerating force due to gravity Fg = mg is balance exactly by the
decelerating force due to atmospheric friction Fd = kSv2; S is the cross-sectional
surface area and v is the velocity of the falling object. Our equilibrium condition
is then

Fg = Fd

Since surface area satisfies S ∝ l2 it follows l ∝ S1/2. Given uniform density
m ∝ w ∝ l3 so it follows l ∝ m1/3. Combining proportionalities

m1/3 ∝ S1/2

from which it follows by substitution into the force equation that

m ∝ m2/3v2

or, after simplifying,
v ∝ m1/6

¤

EXAMPLE 2.11

In this example we will attempt to model observed data displayed in Table 2.1 that
relates the heart rate of mammals to there body weight. From the table we see
that we would like to relate the heart rate as a function of body weight. Smaller
animals have a faster heart rate than larger ones. But how do we estimate this
proportionality?

We begin by assuming that all the energy E produced by the body is used
to maintain heat loss to the environment. This heat loss is in turn proportional to
the surface area s of the body. Thus,

E ∝ s

The energy available to the body is produced by the process of respiration and is
assumed to be proportional to the oxygen available which is in turn proportional
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mammal body weight (g) pulse rate
shrew2 3.5 782

pipistrelle bat1 4 660
bat2 6 588

mouse1 25 670
hamster2 103 347
kitten2 117 300
rat1 200 420
rat2 252 352

guinea pig1 300 300
guinea pig1 437 269

rabbit2 1,340 251
rabbit1 2,000 205

oppossum2 2,700 187
little dog1 5,000 120

seal2 22,500 100
big dog1 30,000 85

goat2 33,000 81
sheep1 50,000 70
human1 70,000 72
swine2 100,000 70
horse2 415,000 45
horse1 450,000 38
ox1 500,000 40

elephant1 3,000,000 48

TABLE 2.1: Superscript 1 data source A.J. Clark; superscript 2 data source Altman and Dittmer. See
also [1] and [2].
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to the blood flow B through the lungs. Hence, B ∝ s If we denote the pulse rate
as r we may assume

B ∝ rV

where V is the volume of the heart.
We still need to incorporate the body weight w into this model. If we take W

to be the weight of the heart assuming constant density of the heart it follows

W ∝ V

Also, if the bodies are assumed to be geometrically similar then w ∝ W so by
transitivity w ∝ V and hence

B ∝ rw

Using the geometric similarity again we can relate the body surface area s to
its weight w. From characteristic length scale arguments

v1/3 ∝ s1/2

so

s ∝ w2/3

from which we have rw ∝ w2/3 or

r = kw−1/3

To validate this model we plot w−1/3 versus r for the data Table 2.8. We see
that for the larger animals with slower heart rates that this data appears linear
and suggests this rather crude model actually is supported by the data. For much
smaller animals there appear to be factors that this model is not capturing and the
data falls off the line.

2.4 DIMENSIONAL ANALYSIS

In this chapter we have explored modeling with functions and proportion. In some
instances, such as the mammalian heart rate, it is possible to cobble enough infor-
mation together to actually extract a model; in particular, to identify the functional
form for the relationship between the dependent and independent variables. Now
we turn to a surprisingly powerful and simple tool known as dimensional analysis1.

Dimensional analysis operates on the premise that equations contain terms
that have units of measurement and that the validity of these equations, or laws,
are not dependent on the system of measurement. Rather these equations relate
variables that have inherent physical dimensions that are derived from the funda-
mental dimensions of mass, length and time. We label these dimensions generically
as M,L and T , respectively.

As we shall see, dimensional analysis provides an effective tool for mathemat-
ical modeling in many situations. In particular, some benefits include

1This dimension should not be confused with the usual notion of geometric dimension.
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• determination of the form of a joint proportion

• reduce number of variables in a model

• enforcement of dimensional consistency

• ability to study scaled versions of models

2.4.1 Dimensional homogeneity

An equation is said to be dimensionally homogeneous if all the terms in the equation
have the same physical dimension.

EXAMPLE 2.12

All the laws of physics are dimensionally homogeneous. Consider Newton’s law

F = ma

The units on the right side are

M · L

T 2

so we conclude that the physical dimension of a force must be MLT−2. ¤

EXAMPLE 2.13

The equation of motion of a linear spring with no damping is

m
d2x

dt2
+ kx = 0

What are the units of the spring constant? Dimensionally we can recast this equa-
tion as

MLT−2 + MaLbT cL = 0

Matching exponents for each dimension permits the calculation of a, b and c.

M : a = 1

L : 1 = b + 1

T : − 2 = c

Thus we conclude that the spring constant has the dimensions MT−2. ¤

EXAMPLE 2.14

Let v be velocity, t be time and x be distance. The model equation

v2 = t2 +
x

t

is dimensionally inconsistent.
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EXAMPLE 2.15

An angle may be defined by the formula

θ =
s

r

where the arclength s subtends the angle θ and r is the radius of the circle. Clearly
this angle is dimensionless.

2.4.2 Discovering Joint Proportions

If in the formulation of a problem we are able to identify a dependent and one
or more independent variables, it is often possible to identify the form of a joint
proportion. The form of the proportion is actually constrained by the fact that the
equations must be dimensionally consistent.

EXAMPLE 2.16 Drag Force on an Airplane

In this problem we consider the drag force FD on an airplane. As our model we
propose that this drag force (dependent variable) is proportional to the independent
variables

• cross-sectional area A of airplane

• velocity v of airplane

• density ρ of the air

As a joint proportion we have

FD = kAavbρc

where a, b and c are unknown exponents. As a consequence of dimensional consis-
tency we have

MLT−2 = (M0L0T 0)(L2)a(
L

T
)b(

M

L3
)c

= M cL2a−3c+bT−b

From the M exponent we conclude c = 1. From the T exponent b = 2 and
from the L exponent it follows that 1 = 2a − 3c + b, whence a = 1. Thus the only
possibility for the form of this joint proportion is

FD = kAv2ρ

Note that if the density of were a constant it would be appropriate to simplify this
dependency as

F = k̃Av2

but now the constant k̃ actually has dimensions. ¤
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2.4.3 Procedure for Nondimensionalization

Consider the nonlinear model for a pendulum

d2θ

dt2
= −g

l
sin θ

Based on the terms in this model we may express the solution very generally as a
relationship between these included terms, i.e.,

φ(θ, g, l, t) = 0

Note that the angle in this model is dimensionless but the other variables all
have dimensions. We can convert this equation into a new equation where none
of the terms have dimensions. This will be referred to, for obvious reasons, as a
dimensional form of the model.

To accomplish this, let

τ =
t

√

l/g
.

The substitution of variables may be accomplished by noting that

d2θ

dt2
=

d2θ
l
g dτ2

Thus, after cancelation, the dimensionless form for the nonlinear pendulum model
is

d2θ

dτ2
= − sin θ

Now the solution has the general form

f(θ, τ) = 0,

or equivalently,

f(θ,

√

l

g
t) = 0

This is a special case of a more general theory.
The Buckingham π-theorem. Any dimensionally homogeneous equation with

physical variables x1, . . . , xm expressed

φ(x1, . . . , xm)

may be rewritten in terms of its associated dimensionless variables π1, . . . , πn as

f(π1, . . . , πn) = 0

where

πk = xak1

1 . . . xakm

m



“331book”
2005/8/13
page 32

32 Chapter 2 Qualitative Modeling with Functions

2.4.4 Modeling with Dimensional Analysis

Now we consider two examples of the application of the ideas described above
concerning dimensional analysis. In each of these examples there is more than one
dimensionless parameter and it is appropriate to apply the Buckingham π-theorem.

The Pendulum. In this example the goal is to understand how the period
of a pendulum depends on the other parameters that describe the nature of the
pendulum. The first task is to identify this set of parameters that act as the
independent variables on which the period P depends.

Obvious candidates include From this list we are motivated to write

variable symbol dimensions
mass m M
length l L
gravity g LT−2

angle θ0 M0L0T 0

period P T

TABLE 2.2: Parameters influencing the motion of a simple pendulum.

P = φ(m, l, g, θ0)

As we shall see, attempting to establish the form of φ directly is unnecessarily
complicated. Instead, we pursue the idea of dimensional analysis.

To begin this modeling procedure, we compute the values of a, b, c, d and e
that make the quantity

π = malbgcθd
0P e

a dimensionless parameter. Again, this is done by equating exponents on the fun-
damental dimensions

M0L0T 0 = MaLb(LT−2)c(M0L0T 0)dT e

From M0: 0 = a.
From L0: 0 = b + c.
From T 0: 0 = −2c + e.
From this we may conclude that

π = m0l−cgcθd
0P 2c

or, after collecting terms,

π = θd
0

(gP 2

l

)c

where π is dimensionless for any values of d and c. Thus we have found a complete
set of dimensionless parameters

π1 = θ0
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and

π2 =

√

g

l
P

Since the period P of the pendulum is based on dimensionally consistent
physical laws we may apply the Buckingham π-theorem. In general,

f(π1, π2) = 0

which we rewrite as
π2 = h(π1)

which now becomes

P =

√

l

g
h(θ0)

We may draw two immediate conclusions from this model.

• The period depends on the square root of the length of the pendulum.

• The period is independent of the mass

Of course we have not really shown these conclusions to be ”true”. But now we have
something to look for that can be tested. We could test these assertions and if they
contradict our model then we would conclude that we are missing an important
factor that governs the period of the pendulum. Indeed, as we have neglected drag
forces due to friction it seems our model will have limited validity.

The functional form of h may now be reasonable calculated as there is only
one independent variable θ0. If we select several different initial displacements θ0(i)
and measure the period for each one we have a set of domain–range values

h(θ0(i)) = Pi

√

g

l

to which a data fitting procedure may now be applied.

The damped pendulum. We assumed that there was no damping of this
pendulum above due to air resistance. We can include a drag force FD by aug-
menting the list of relevant parameters to

m, l, g, θ0, P, FD

Now our dimensionless parameter takes the form

π = malbgcθd
0P eF f

D

Converting to dimensions

M0L0T 0 = MaLb(LT−2)c(M0L0T 0)dT e(MLT−2)f

As
0 = a + f
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it is no longer possible to immediately conclude that a = 0. In fact, it is not. (See
problems).

Fluid Flow. Consider the parameters governing the motion of an oil past
a spherical ball bearing. Let’s assume they include:

variable symbol dimensions
velocity v LT−1

density ρ ML−3

gravity g LT−2

radius l L
viscosity µ ML−1T−1

TABLE 2.3: Parameters influencing the motion of a fluid around a submerged body.

The dimensionless combination has the form

π = vaρblcgdµe

Using the explicit form of the physical dimensions for each term we have

M0L0T 0 = (LT−1)a(ML−3)b(L)c(LT−2)d(ML−1T−1)e

Again, matching exponents
M : 0 = b + e

L : 0 = a − 3b + c + d − e

T : 0 = −a − 2d − e

Sinc there are three equations and five unknowns the system is said to be unde-
termined. Given these numbers, we anticipate that there we can solve for three
variable in terms of the other two. Of course, we can solve in terms of any of the
two variables. For example,

a = −2d − e

b = −e

c = d − e

Plugging these constraints into our expression for π gives

π =
(v2

lg

)

−d(ρlv

µ

)

−e

Thus, our two dimensionless parameters are the Froude number

π1 =
v2

lg

and the Reynolds number

π2 =
vρl

µ

For further discussion see Giordano, Wells and Wilde, UMAP module 526.
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PROBLEMS

2.1. By drawing a new graph, show the effect of the size of the island on the

• extinction curve

• migration curve

Now predict how island size impacts the number of species on the island. Does
this seem reasonable?

2.2. Give an example of a commodity that does not obey the

• law of supply

• law of demand

and justify your claim.
2.3. Translate into words the qualitative interpretation of the slope of the supply and

demand curves. In particular, what is the meaning of a

• flat supply curve?

• steep supply curve?

• steep demand curve?

2.4. Consider the table of market adjustments below. Assuming the first point is
on the demand curve, compute the equations of both the demand and supply
curve. Using these equations, find the missing values A, B, C, D. What is the
equilibrium point? Do you think the market will adjust to it?

quantity price
3 0.7

0.14 0.7
0.14 0.986

0.1972 0.986
A =? B =?
C =? D =?

2.5. Using the cobweb plot show an example of a market adjustment that oscillates
wildly out of control. Can you describe a qualitative feature of the supply and
demand curves that will ensure convergence to an equilibrium?

2.6. Consider the effect of a price increase on airplane fuel (kerosene) on the airline
industry. What effect does this have on the supply curve? Will the airline
industry be able to pass this cost onto the flying public? How does your answer
differ if the demand curve is flat versus steep?

2.7. Prove properties 2.1 and 2.2.
2.8. Is the temperature measured in degrees Fahrenheit proportional to the temper-

ature measured in degrees centigrade?
2.9. Consider the Example 2.6 again. Demonstrate the proportionalities stated. For

the case of the breaking distance equate the work done by the breaks to the
dissipated kinetic energy of the car.

2.10. Items at the grocery store typically come in various sizes and the cost per unit is
generally smaller for larger items. Model the cost per unit weight by considering
the superposition of proportions due to the costs of

• production

• packaging
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• shipping

the product. What predictions can you make from this model. This problem
was adapted from Bender [1].

2.11. Go to your nearest supermarket and collect data on the cost of items as a function
of size. Do these data behave in a fashion predicted by your model in the previous
problem?

2.12. In this problem take the diagonal of a rectangle as it’s length scale l. Show by
direct calculation that this can be used to measure the area, i.e.,

A = αl2

Determine the constant of proportionality α in terms of the shape factor of the
rectangle.

2.13. Consider a radiator designed as a spherical shell. If the characteristic length
of the shell doubles (assume the larger radiator is geometrically similar to the
smaller radiator) what is the effect on the amount of heat loss? What if the
design of the radiator is a parallelpiped instead?

2.14. How does the argument in Example 2.10 change if the falling object is not spher-
ical but some other irregular shape?

2.15. Extend the definition of geometric similarity for

• parallelpipeds

• irregularly shaped objects

Can you propose a computer algorithm for testing whether two objects are ge-
omtrically similar?

2.16. Consider the force on a pendulum due to air friction modeled by

FD = κv2

Determine the units of κ.
2.17. Newton’s law of gravitation states that

F =
Gm1m2

r2

where F is the force between two objects of masses m1, m2 and r is the distance
between them.
(a) What is the physical dimension of G?
(b) Compute two dimensionless products π1 and π2 and show explicitly that

they satisfy the Buckingham π-theorem.
2.18. This problem concerns the pendulum example described in subsection 2.4.4. Re-

peat the analysis to determine the dimensionless parameter(s) but now omit the
gravity term g. Discuss.

2.19. This problem concerns the pendulum example described in subsection 2.4.4. Re-
peat the analysis for determining all the dimensionless parameters but now in-
clude a parameter κ associated with the drag force of the form FD = κv. Hint:
first compute the dimensions of κ.

2.20. Convert the equation governing the distance travelled by a projectile,

d2x

dt2
=

−gR2

(x + R)2
,
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to the form
d2y

dτ2
=

−1

(y + 1)2
,

where y and τ are dimensionless.
2.21. Reconsider the example in subsection 2.4.4. Instead of solving for a, b, c in terms

of d, e solve for c, d, e in terms of a and b. Show that now

π
′

1 =
v

√
lg

and

π
′

2 =
ρl3/2g1/2

µ

Show also that both π
′

1 and π
′

2 can be written in terms of π1 and π2.
2.22. Consider an object with surface area A traveling with a velocity v through a

medium with kinematic viscosity µ and density ρ.
(a) Assuming the effect of µ is small compute the drag force due to the density

Fρ.
(b) Assuming the effect of ρ is small compute the drag force due to the kinematic

viscosity Fµ.

c) Compute the dimensionless ratio of these drag forces and discuss what pre-
dictions you can make.

2.23. Assume a drag force of the form

Fd = κv2

acts on a pendulum in addition to the gravity force. Use dimensional analysis to
show that the solution of the pendulum equation can be written in the form

θ = ψ(t
√

l/g, lκ/m).

2.24. How does the required power P of a helicopter engine depend on the length of the
rotors l? The rotors are pushing air so presumable the density ρ as well as the
weight of the helicopter w = mg are variables that affect the power requirement.
Draw a sketch of your result plotting P versus l. See [3] for more discussion of
this problem.
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