
Homework Set: Line of Best Fit

1. Review how we constructed the linear program when the error measure

was: E(m, b) =
n∑

i=1

|yi − mxi − b|. Our set of basic variables was:

x = [ m, b, ε1, . . . , εn, a1, . . . , an ]T

(a) Rewrite the linear programming problem so that we can remove the
set of ε’s, and the new set of basic variables will be:

x = [ m, b, a1, . . . , an ]T

Your answer will not require Aeq and beq.
(b) Change our Matlab code appropriately- This will be a large decrease

in the size of our matrix A, so we’ll use this version.
(NOTE: You can double check your answer by trying out both pro-
grams on the “toy” data we gave in class).

2. Review the dimensional analysis we did on the length of the pendulum
rod to the time it took to complete one “swing” (period). We said that,
given data, we could verify our equation. Let us do that now, with the
following experimental data:

Swings Length Time
133 19 120
118 25 120
80 31.7 100
89 45 120
62 60 100
77 60 120
63 110 120
43 126 100
49 150 120
36 199 100
31 247 100
18 264 60
19 268.5 60

Some notes before we begin:

(a) We will need to get time per period from this data set.
(b) Time was measured on a stopwatch, so we will assume that the error

we get is all from measuring time. Why do we mention this (was there
some assumption we made in setting up all the error measures)?

(c) You will need to linearize our model before finding the line of best fit.
That is, we want to experimentally determine the scaling exponent.
You may assume θ plays no role in this model.

(d) Use all three lines of best fit- Which one seems to work the best?
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3. How resistant to change is the slope under each method? Here’s a nu-
merical experiment to check. We will select one of the y’s, and move it
up and down (using the value of ∆y). We will then check the slope using
each of the three methods, and plot the result. In the following code, we
make 40 changes to y1:

x=[10 20 30 40 50 60 70 80];
y=[25 70 380 550 610 1220 830 1450];
n=length(x);
DeltaY=linspace(-800,800,40);

for i=1:40
y(1)=25+DeltaY(i); %Try changing this line-
[xopt2,fopt]=unifbestline(x,y);
A=linreg(x,y)
[xopt1,fopt2]=onenormline(x,y);
%The following are 1-,2- then infinity norms:
Slopes(i,:)=[xopt1(1), A.m, xopt2(1)];
end
plot(Slopes) %You’ll see 3 curves

Your code will be different depending on the function names you used.
The code as written will move the first data point up and down. Try
changing other data points as well! For example, to see what happens if
you change the third data point, replace the line following for i=1:40 to:

y(3)=380+DeltaY(i);

What conclusions can you draw about the stability of the slope computa-
tion regarding the position of an “outlier” (the data point that is chang-
ing)?

4. In this experiment, we want to see how resistant the slope is to noise. One
way to quantify this is to see what kind of variation there is in the slope- At
the end, we’ll compute the standard deviation of our slope computations-
Small variation is what we’re looking for:

%Noise Resistance Example:

x=linspace(-5,5,50); %30 data points
y=3*x-2; %Perfect Line
n=length(x);
AmtNoise=linspace(0.1,10,40);

for i=1:40
ynoise=y+AmtNoise(i)*randn(size(y));
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[xopt2,fopt]=unifbestline(x,ynoise);
A=linreg2(x,ynoise)
[xopt1,fopt2]=onenormline(x,ynoise);
%The following are 1-,2- then infinity norms:
Slopes(i,:)=[xopt1(1), A.m, xopt2(1)];
end
mean(Slopes)
std(Slopes)

5. The final example is very similar to the last one- I’m only changing how
the noise is defined- In this case, which is best?

%Noise Resistance Example:
x=linspace(-5,5,50); %30 data points
y=3*x-2; %Perfect Line
n=length(x);
AmtNoise=linspace(0.1,10,40);

for i=1:40
ynoise=y+AmtNoise(i)*(rand(size(y))-0.5);
[xopt2,fopt]=unifbestline(x,ynoise);
A=linreg2(x,ynoise)
[xopt1,fopt2]=onenormline(x,ynoise);
%The following are 1-,2- then infinity norms:
Slopes(i,:)=[xopt1(1), A.m, xopt2(1)];
end
mean(Slopes)
std(Slopes)

6. What kinds of conclusions can we draw from these experiments? In what
situations would one choice of error be better than the others?

A note about noise: Matlab gives two random number generators- rand and
randn. The difference is that rand draws randomly from the interval [0, 1],
with a uniform distribution. The other generator, randn, draws numbers from
a normal distribution with mean zero and standard deviation of 1.
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