Chapter 7

Neural Networks

The term “neural network” has come to be an umbrella term covering a broad
range of different function approximation or pattern classification methods.

The classic type of neural network can be defined simply as a connected
graph with weighted edges and computational nodes. Let us summarize those
we have seen up to this point:

e The Linear Neural Net: € — Ax + b.

e Kohonen’s SOM: The graph is the network topology, and the units
undergo competition.

e Neural Gas: Same interpretation as Kohonen’s SOM.

e Radial Basis Functions: Each “center” represents a computational unit,
and the output of unit i was & — ¢(||z — c@||)

In the case of the Linear Neural Net and the RBF, network training was cast
as solving a least squares problem, so that we could use features of linear
algebra to solve for the best parameters.

In this chapter, we look at the classic workhorse of the neural network
industry: The three-layer, feed-forward neural network.

As with the RBF, we will see that the three-layer, feed-forward network
is capable of performing function approximation arbitrarily well when the
domain is a compact subset of R".

141

142 CHAPTER 7. NEURAL NETWORKS

7.1 Biological Motivation

The neuron is the basic building block of the central nervous system. There
are many different types of neurons, but each can be anatomically broken
down into three parts: the dendrites, the cell body, and the axon. Informa-
tion flows from the dendrites to the cell body through the axon to a synaptic
junction connecting to the dendrite to the next neuron.

The synaptic junction is made up of the presynaptic node (the end of an
axon), the postsynaptic node (the beginning of a dendrite), and the “empty
space”, which is the synapse.

For the purposes of our basic mathematical model, we will assume the
following processing features that a neuron makes to information (we will
refer to Neurons as Nodes in what follows):

7.1.1 As information flows across a synapse, information can be amplified,
inhibited, or re-polarized. If we let = denote the signal, then synaptic
processing is represented as a multiple of x:

T — Wx

where w will be referred to as a weight. Since there are multiple in-
coming signals, we denote by w;; the weight connection from Node j
to Node 1.

7.1.2 At the cell body, information from across the dendrites is collected and
processed in the following way.

(a) The incoming signals are summed. Let j = 1..m denote the index
of the signal coming to Node i:

m
E Wi T
=1

(b) This quantity is added to the resting state of the cell, which is
assumed to be constant:

m
Z Wi T + bz
j=1

and b; is called the bias of the Node. The summed quantity is
referred to as the Prestate of the Node.

BIOLOGICAL MOTIVATION 143

(c) Biologically, we assume an “all or nothing” response to the in-
coming signal. That is, if the signal strength is above a certain
threshold, the neuron fires. If not, then the information is not
passed along. Mathematically, we use a step function, with the
step at 0. This is not a differentiable function, however. We sub-
stitute for the step function a “sigmoidal” function, o(z). This is
defined to be a monotonically increasing function so that

lim o(z) =A lim o(z) = B
T—>—00 T—00
where A and B are constants. Common choices for the sigmoidal
function include:

i. The inverse tangent:
o(z) = atan(z)

ii. The exponential sigmoidal function:

1
op(w) = 1te Be

We will use the latter choice, since the computation of its deriva-
tive is especially easy to implement on the computer:

i) = L2

—1iefr fo(z)(1—o(z))

Other functions that transfer the incoming signal out to the axon
are possible. At times, we will use the following, denoted by ¢(z)
as transfer functions:

i. The Linear Node
t(z) ==z

ii. The Circular Node (two inputs, two outputs per node):

— * Yy
t(z,y) = (\/x2+y2’ \/x2+y2>

ili. The Spherical Node (three inputs, three outputs):

T Y z
t‘CC?yJZ = I ?
() <\/:c2+y2+z2 vVt +y? + 22 \/3:2+y2+22>

144 CHAPTER 7. NEURAL NETWORKS

See [13, 15] for examples of how to implement the last two transfer
function types.

7.1.3 The axon sends along the information to the synapse.

In summary, we have the following information processing for the i*"

single node:
T — Zwijx + bl — 0 (wa.’li +bz>

j=1 7j=1
N
v v
Prestate State

In vector form,
= (w;) 'z + b = o (w) "z + b;)
So that, taking € R", and having k& Nodes,
x - ((W(O))T:c + b) ~o ((W<°>)Ta; + b)

where
by
0 b2
WY = (w,ws,...,w;) b=)
by
and o operates on a vector or matrix component-wise. Also note that, if o
were a linear function, then the neural network would be linear.

7.2 The Three Layer Feedforward Neural Net-
work

The usual method of describing a neural network’s architecture is to use a
connected graph with computational nodes. The basic feedforward neural
network uses three layers of “nodes”. The first layer is the input layer, so the
number of nodes is equal to the dimension of &, and the transfer function is
linear.

The hidden layer contains the nonlinear transfer function, and there is a
choice as to how many nodes one includes in the hidden layer. We assume
there are k£ nodes in the hidden layer.

7.2. THE THREE LAYER FEEDFORWARD NEURAL NETWORK 145

The output layer again has a linear transfer function, and there are as
many nodes here as there are output variables. Each edge of the graph is
weighted, and we refer to edges from the input layer to the hidden layer as

the matrix
wO — [W.(.O)]
Y li=1:m(1), j=1:n(0)

where n(7) is the number of nodes in Layer i, and

wo=[wy|]
i=1:n(2), j=1n(1)

so that W[refers to the weight in the k™ layer, going from Node j in the
k'™ layer to Node i in the k + 15 layer.

There are also vectors of biases associated with the hidden layer, and
output layer, respectively:

b and b

For the purposes of the backpropagation algorithm given later, note that
the biases can also be represented as one additional node in the input and
hidden layers, with constant transfer function, o(z) = 1. We will adopt this
notation, and suppress the bias specification in Section 4.2.1. Figure 7.1
shows the graphic layout of the three layer, feedforward neural network.

The purpose of this network is to provide an approximation to an ar-
bitrary continuous function, F', defined on a compact domain X, and we
will use the notation y = F(x), where x € RY and y € R™. The net-
work will render the approximation in terms of a sigmoidal basis so that the
approximation to F' is given pointwise by:

y) = F(m(z’)) ~ (W-(1)<7 (W(O) cx® 4 b(O)) + b(l)) (7.1)

In a paper of fundamental importance, Cybenko [6] shows that sums of the
form in equation (7.1) are dense in the space of continuous functions defined
on the unit cube. In other words, a neural network is capable of approx-
imating any continuous function arbitrarily well by increasing the number
of nodes in the hidden layer. As the number of nodes in the hidden layer
increases, the error between the network approximation and the continuous
function goes to zero. This is very significant for several reasons:

e It gives us a theoretical framework from which to work.

146

CHAPTER 7. NEURAL NETWORKS

Y1 Ym
output layer

/
24

4[’ :\\»

AN

~
O

<7

input layer

\
5

Xz N

Figure 7.1: The neural network architecture.

The proof of this theorem ties neural networks to the classical ap-
proaches to function approximation in mathematics.

It solves one of Hilbert’s problems from the turn of the last century.
Kolmogorov had given the first proof in the 1950’s, but it is still not
clear that the functions he used can be implemented in a computer
algorithm.

The proof revitalized neural network research. Prior to this, research
had been stagnant after the discovery that the first neural networks (in
the 1960’s) were incapable of modeling certain standard functions (the
XOR function). We know now that this was because the first networks
only worked on linearly seperable data.

Although we have taken outrageous liberties (biologically speaking) in
our model, the model shows that a very simple structure is capable of
very complex behavior.

In fact, there are more general results that can be found in [11, 12, 9, 10,

7, 8] and more specifically, they show that a neural approximation not only
approximates the function, but can also simulatenously approximate the first
m derivatives using the same functional parameters.

O hidden layer

7.3. TRAINING AND ERROR 147

7.3 Training and Error

Theoretically, we have now seen the neural network as a “Universal Function
Approximator”. The real question now is, given an input and output set,
how does one build the neural net? This question can be reframed as: Find
the weights w;k and biases b; that perform a desired input-output. This
process is also known as network training.

For a fixed value of the parameters in the matrices W® and biases b,
the network outputs a smooth function in . As mentioned previously, we
adopt the notation of including the biases in the parameters W® and add
an extra node on the hidden and input layers.

Define the mean square error of the approximation, given a set of param-
eters {W©@ WM} as:

|X|
E(W©, wh) 2WZHF - (WW o (WO 5 (72)

where |X| denotes the number of points in the data set X. Then E is a
smooth function of the weights and biases, so that it can be minimized.
From the method of steepest descent, we update the weights:

Wt +1) = WP(t) + alt)d(?) (7.3)

until the error has become smaller than a prescribed value. For the standard
gradient descent, for example, we have

d(t) = W(t)

How we find the value of «(t) and the definition of d(¢) is where the
divergence in training algorithms occurs. There are many algorithms built
especially for this purpose, such as Line Minimization. Other update meth-
ods can be applied, since training is a general, unconstrained optimization
problem:

min F
WO

Most optimization algorithms will require that we obtain expressions to

compute the partial derivatives of E with respect to the weights and biases.

148 CHAPTER 7. NEURAL NETWORKS

It is fortunate that, for large networks, there is a recursive algorithm to ac-
complish this. This will be discussed in the next section. First, we introduce
some notation that will make the algorithm more clear.

Define the prestate for layer 7, Node j at time ¢:

n(i—1)
PJ?: Z W;’,;ls,i—l, for i=1...L
k=1

where S]’: is the State of Node j on layer i, which is

S;:{J(P;) i>0

T 1=20

7.3.1 Backpropagation of Error

We now detail a recursive algorithm, known as the backpropagation of error
[1], which gives an efficient method for computing the partial derivatives for
training (see Equation (7.3)).

The goal is to compute
)

—
oW,
for each 1, 7, k.
From the chain rule, we can write

0E OE OP;

owit oPF oWt

which we can re-express, using:

oP! . opitt . .
7'1 — Szfl 4 — Wz O_I(Pz)
aW]zk—l k aP]?; ik k
and defining:
5 oF
iT 9 p]z
Then we have:
oF

pr—— = 61 . Si_l
aij 1 J k

7.3. TRAINING AND ERROR 149

So, we need an algorithm to compute (5;
For the output layer (L), with aribtrary transfer function o,

OE _ OF 0S OF
L— =o' (PH=—=—
% = apr ~astapt ~ ° i) gsr

J

where ;’Tﬁi is computed from the error by substituting S]-L into Equation (7.2):
J
2.X| sy
-5 Z @~ |12
e
which implies that:
1 X|
OF
oSt = |X‘ Z ;' (7.4)
For the hidden nodes,
") oE oRt

. OF
o= —— — = Tk
i =ap ~ 2 a5 op

Noting 2 —W,;J o'(Pj), we obtain:

8P1

n(i+1)

Which, from our definition of (5;-, is recursively defined as:

n(i+1)
i =0o'(P}) > W (7.5)
k=0

This can be interpreted as a backpropagating the 6; backwards through the
network. The algorithm is summarized as:

Algorithm 7.3.1 The Backpropagation Algorithm

7.3.1 Forward propagate all the z’s, keeping track of the error.

150 CHAPTER 7. NEURAL NETWORKS

7.3.2 Compute 67, for j =0... M — 1 using:

oF
L _ L
5j = U'(Pj)@
7.3.3 Compute all other ¢§’s:
n(i+1)
8y =0o'(P}) > oWy,
k=0
7.3.4 Compute:
E))
=0y SE

fori=1...L,j=1...n(i+1),and k =1...n(3).

7.3.2 Nonlinear Optimization Techniques

There are many methods to choose from, and some are included below:
e Steepest Descent (with variations on how to compute «)
e Newton’s Method (This is indirect - we solve for where f'(z) = 0).
e Conjugate Gradient (Search along the eigenvectors of the Hessian).
e Levenburg-Marquardt (A combination of the methods above).

To really study all of these techniques would take us too far afield in this
course. Any text on nonlinear optimization (as well as “Numerical Recipes
for C”) will cover the basic ideas.

The introduction of a nonlinear optimization technique is the primary
reason we will use Matlab to perform our neural network training. Program-
ming these techniques can be a delicate task! For our purposes, Levenburg-
Marquardt is more than adequate.

7.4. NEURAL NETWORKS AND MATLAB 151

7.4 Neural Networks and Matlab

Matlab has set up a very general data structure by which to construct and
train almost any type of neural network. Here we focus on the construction
and operation of the three-layer feed-forward network.

Because the data structure is so general, building and training a neural
network is broken into multiple stages.

e Identify the network architecture. This includes constructing neural
layers, connections, identifying the transfer functions for each node.
Furthermore, one must define the error measure (or performance in-
dex), the training function, and how one wishes to compute a Jacobian
matrix. This step would be extremely tedious if we had to do it every
time! Matlab has several built in architectures, and we’ve dealt with a
few. For example:

— newson initializes Kohonen’s SOM.

newlin initializes a linear neural network.

— newrb initializes a radial basis function network.

newrbe initializes (and trains) an exact RBF.

The new function here is newff.

e Train the network. This is performed (for all network types) by the
command: net=train(net,X). The specific functions and training pa-
rameters have already been set up by the initialization process.

e Simulate the network with new data. Again, this is performed gener-
ically by: Y=sim(net,X). The specific functions and parameters have
been set in the network data structure.

Before continuing, lets look at an example:

Sample Training Session 1:

P=[0123456789 10];
T=[01234321234];

net = newff ([0 10],[5 1],{’tansig’ ’purelin’});
Y = sim(net,P);

B W N -

152 CHAPTER 7. NEURAL NETWORKS

plot(P,T,P,Y,’07%)
net.trainParam.epochs = 50;
net = train(net,P,T);

X = linspace(0,10);

Y = sim(net,X);

plot(P,T, ko’ ,X,Y)

© 00 00 N O O

Training Session 1 explanation:

e Lines 1 and 2 set up the training patterns and targets. Notice that the
domain runs between a minimum of 0 and a maximum of 10, which
are the numbers appearing in the first argument of newff. Notice also
that the sizes of the domain and range sets are given as m X n, where
m =dimension and n =number of data points.

e Line 3 initializes a feed forward neural network. The arguments shown
are required, and later we will see what other optional arguments are
allowed. For now, notice that the first argument gives the minimum
and maximum values in the domain set. Normally, one uses minmax (P)
in place of actually typing these values in. This also implicitly defines
the number of nodes in the input layer (which is the domain dimension).

The second argument in Line 3 defines the number of nodes in the
hidden layer and in the output layer. This vector also implicity defines
how many layers you have by counting the size of this vector. Thus, we
can have as many layers as we wish.! Later, we will define a network
with multiple hidden layers.

The last required argument in Line 3 is the type of transfer function
that will be used. The tansig function is the inverse tangent function,
which gives the same performance as our standard sigmoidal function.
We will always use a linear layer in the output, so this argument is
always purelin.

e Lines 4 and 5 show you what the neural network output looks like
before network training (the weights were initialized using initwb).

LTheoretically, we require only one hidden layer. However, many researchers find it
easier to train a network with two small hidden layers versus one large hidden layer. This
is mainly a matter of taste.

7.4. NEURAL NETWORKS AND MATLAB 153

e Line 6 sets up how many training iterations (or epochs) will be per-
formed. This means that the network will run through all of the data
50 times.

e Line 7 trains the network using Levenburg-Marquardt (which is the
default).

e Lines 8 and 9 simulate the network and plots the result. Note that we
plot more than just the trained points to see if the network generalizes
well.

Exercise:
7.4.1 Run the sample exercise as written and plot the output.
7.4.2 Increase the number of epochs to 1000 and retrain and replot.

7.4.3 Create a new network with 10 nodes in the hidden layer, train using
600 epochs. Plot the result.

7.4.4 Compare the plots and discuss the results.

The NEWFF command

The full newff command looks like:
net = newff(M,[S1 S2...8N],{T1 T2...TN},F1,F2,F3)

Description of the input parameters:

e M is a vector of minimum and maximum values of the data. The size
of M will be n x 2, where n is the dimension of the input data (and
so will define the number of nodes in the input layer). We will almost
always use the function minmax (P) for this argument.

e The next vector lists the number of nodes in the next N layers (not
the input layer). Thus, for a three layer network, we will always use
[a b] where a is the number of nodes in the hidden layer, and b is the
output dimension.

154 CHAPTER 7. NEURAL NETWORKS

e The next list defines the transfer function for each layer. We will al-
most always use {’tansig’,’purelin’}, although other options are
available. In fact, below we will write our own transfer function.

e The next three functions define (in order):

— F1 is the nonlinear optimization function to use. The default
is Levenburg-Marquardt (trainlm). Others are possible. Type
help newff to read the WARNING message about memory re-
quirements and different possible options.

— F2 defines how the Jacobian matrix will be computed. The default
function is learngdm which computes the Jacobian via backprop-
agation.

— F3is the performance function, whose default uses the mean squared
error (’mse’), which we will use.

7.4.1 Training Notes

In this section, we look at how to train a neural network, and what to do if
the training is not progressing well. What constitutes a good network? How
do we choose the number of nodes in the hidden layer?

Parameters and Preprocessing

What may be striking in the newff command is the absence of any training
parameters. Recall that in the section on Radial Basis functions, there was
a parameter that controlled the width of the Gaussians. However, also recall
that changing the widths of the Gaussians had the same effect as rescaling
the data. That is what we may have to do when using a feed forward network.
Let’s see an example.

In Figure 7.2, we see a standard sigmoidal function. For small values
of x, the corresponding images, o(z) are quite different. We say that o is
able to differentiate between these data points. On the other hand, suppose
that most of your data is out at the “tails” of the sigmoidal. Then the
corresponding images begin to pile up at the horizontal asymptotes. That is,
for example, that ¢(19) becomes indistinguishable from ¢(50). For example,

if o(z) = H%, then a calculator might say that ¢(19) = 0.9999999, and

7.4. NEURAL NETWORKS AND MATLAB 155

0(50) = 1. Therefore, if all of the data is between 19 and 50, the output will
almost always be 1.

This effect is called saturation- we say that the sigmoidal function has
been saturated if the data has not been scaled appropriately.

This is an effect to keep in mind if the neural network is not training very
well. Rather than having a lot of training parameters in the function call, we
will assume that the data has been scaled “appropriately”. In other words,
we will always look at preprocessing the data before giving it to the neural
network to train. Let’s look at some options in preprocessing that Matlab
gives us. Each method has three associated commands. One command is
to calculate the processing parameters from the given data and to perform
that method on the data (the method begins with pre), another command
is for postprocessing the data (the inverse of the preprocessing function, and
begins with post), and a third command that will process new data using
parameters that have already been computed (for sending new data to the
network, and begins with tra).

prestd Normalize data for zero mean, stand. dev. 1
poststd Undo the PRESTD command
trastd Process new data using the precalculated parameters.
premnmx Normalize data for maximum of 1 and minimum of -1.
postmnmx Undo the PREMNMX command.
tramnmx Transform new data with precalculated parameters.
prepca Principal component analysis on input data with zero
mean.
Matlab doesn’t provide a post processor.
trapca Transform data with PCA matrix computed by
PREPCA.

Command Input/Output Arguments:

[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t)
[p,t] = poststd(pn,meanp,stdp,tn,meant,stdt)
[pn] = trastd(p,meanp,stdp)

[pn,minp,maxp,tn,mint ,maxt] = premnmx(p,t)
[p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)
[pn] = trastd(p,minp,maxp)

156 CHAPTER 7. NEURAL NETWORKS

151

0.5

-2 1 1 1 1 1 1 1

x3

-20 -15 -10 -5 0 5 10 15

Figure 7.2: The Sigmoidal Function, and an example of “Saturation”: As the
size of the input values gets large, o loses its ability to distinguish between
data points.

2C

7.4. NEURAL NETWORKS AND MATLAB 157

[ptrans,transMat] = prepca(P,min_frac)
[Ptrans] = trapca(P,TransMat)

Exercise: Write commands prekl, postkl and trakl that are similar to the
pca commands, but also performs mean subtraction. You’ll need to decide
on input/output arguments.

Exercise: Write commands premax, postmax, and tramax that trans-
form a data set so that it has zero mean and a maximum absolute value (in
each dimension) of 1. Again, you’ll need to decide on input/output argu-
ments.

Network Complexity and Generalization

By the theorems we stated earlier, it is possible for a three layer neural net to
approximate an arbitrary continuous function over a compact domain to an
arbitrary precision. That is, if we added enough nodes in the hidden layer,
we could get arbitrarily close to the function. By the way, in the proof of such
statements, it is assumed that there is enough data to accurately reproduce
the function to arbitrary accuracy.

So adding new hidden nodes in a three layer network is akin to adding
new centers to an RBF. Thus, we begin to run into the same old problem
in the approximation of a function: The tradeoff between accuracy on the
training set, and generalization off the training set.

The rule of thumb in getting a good neural net is to use the least number
of hidden nodes that you can to still get the accuracy that is desired.

Nice Demonstration: In Matlab, run the demonstration nnd1ign. This
will animate the network response as the training algorithm proceeds.

An alternative procedure that I would not recommend, but other re-
searchers do is to use plenty of hidden nodes, but to stop training early. The
reason I don’t like this option is that the more hidden nodes one uses, the
higher the dimension of the error space. For example, if the input dimension
is n and the output dimension is m, then adding another hidden node adds
n +m + 1 extra training parameters, and so increases the dimension of the
error space by n +m + 1. It is common in network training to get stuck
in local minima. By increasing the dimension of the error space, it is my
opinion that you increase the chances of getting stuck (not to mention that
you increase the amount of computation and memory required to train).

One way that we might think about the number of nodes in the hidden
layer is to consider that the first part of the mapping (before the sigmoidals

158 CHAPTER 7. NEURAL NETWORKS

are applied) is a linear transformation from R" to IR, where the input
dimension is n and we have k£ hidden nodes. Heuristically, we need enough
nodes in the hidden layer to unfold the data in such a way as to allow the
sigmoidals to differentiate between data points (both in terms of saturation
and in keeping the projection 1 — 1).

7.5 Post Training Analysis

How do we determine whether or not our network is doing a good job? Below
we consider some options for testing the neural network.

7.5.1 Test how the network works on the Validation Set. The validation
set is there as a check to make sure we’re not overtraining the neural
network. One way to use the validation set is to stop training and check
the error on the validation set. The idea is that initially the error on
both the training and validation sets will decrease, but as the network
begins to overtrain (if it does), then the error on the validation set will
increase. If this occurs, we stop training.

Matlab has this utility built into its train function.

An example:

#Create training set
p=[-1:0.05:1];
t=sin(2*pix*p)+0.1*randn(size(p));

%Create a validation set
v.P=[-0.975:0.05:0.975] ;
v.T=[sin(2*pi*v.P)+0.1*randn(size(v.P))];

#Create a network, and train using the validation
net=newff (minmax(p), [20,1]);
net.trainParam.show=25;

net.trainParam.epochs=300;
[net,tr]=train(net,p,t,[1,[1,v);

Here we also see the added output argument to train, a vector tr,
which is a training record of the errors. The added empty vectors are
for “input delay” arguments, which we will not use in this course.

7.5. POST TRAINING ANALYSIS 159

When run, the training should stop early due to an increase of the error
on the validation set.

7.5.2 A second method is to perform some analysis on the errors that the
network produces. There are several methods to do this (including
some statistics that are beyond the scope of this course). We discuss
three commonly used procedures:

(a)

Matlab has a postreg function to analyze errors for 1-dimensional
output. This function performs a linear regression between the
neural output of the function and the target values. The general
idea is that the higher the correlation, the better the training for
the network. Here is an example:

p=[-1:0.05:1];
t=sin(2*pi*p)+0.1*randn(size(p));

v.P=[-0.975:0.05:0.975] ;
v.T=[sin(2*pi*v.P)+0.1xrandn(size(v.P))];

net=newff (minmax(p), [10,1]);
net.trainParam.show=25;
net.trainParam.epochs=200;
[net,tr]=train(net,p,t);
an=sim(net,v.P);
[m,b,r]=postreg(an,v.T);

with the resulting graph and correlation as shown in Figure 7.3.

A second method is taken from the idea that if the training is
good, then the error should be uncorrelated. Put another way,
all correlations should be explained by the neural network model.
We can therefore look at the correlations in the error. Here’s an
example:

x=3*rand (500,3)-1;

y(:,0)=x(:,1).72-x(:,2);
y(:,2)=y(:,1)-exp(x(:,3));

y(:,3)=sin(x(:,1));

net=newff (minmax(x’),[20,3],{’tansig’, ’purelin’});

160 CHAPTER 7. NEURAL NETWORKS

Best Linear Fit: A= (1) T + (-0.00563)
T T T

15

O Data Points
— A=T
Best Linear Fit

0.5

15 1 1 1 1
-15 -1 -0.5 0 0.5 1 15

Figure 7.3: The result of using post regression on the targets. Obtaining a
correlation as shown means that the network has trained well.

net.trainParam.epochs=75;
net=train(net,x’,y’);
vp=3*rand (200,3)-1;
vt(:,1)=vp(:,1).72-vp(:,2);
vt(:,2)=vt(:,1)-exp(vp(:,3));
vt(:,3)=sin(vp(:,1));
an=sim(net,vp’);

G=an-vt’;
[U,S,V]=svd((1/200) *G*G’) ;
S=
1.0e-06 x*
0.3983 0 0
0 0.3534 0
0 0 0.0042

(c) The last method we discuss is similar to the second. We can
examine the histogram of the size of the errors. If training went
well, we can expect the errors to be clustering about zero, and

7.5. POST TRAINING ANALYSIS 161

7.5.3

7.5.4

rapidly trail off.

Examine the weights of the network. Overtraining will generally lead
to very large weights (recall what some of the weights looked like in
the RBF network). Extremely large weights are undesireable, because
they can lead to instabilities in the network- i.e., small deviations in
the domain can lead to huge deviations in the range.

Similarly, weights that are extremely small may suggest that training
could have been done with fewer nodes in the hidden layer.

Regularization. A detailed explanation of regularization is beyond the
scope of these notes, but we can give some heuristics. The basic idea is
to penalize those weights that get very large in favor of small weights.
Formally, we change the error function. Let E denote our standard
mean squared error. Assume all training parameters (weights and bi-
ases) are indexed as: W;, i« = 1,2,...,N. The new error function,
MSE;,¢g, is defined as:

MSEeg =7E + (1 — 7)< > _ Wi

where 7 is called the regularization parameter. As we can see, if v =1,
the weights play no role in the training, but if v = 0, the weights play
the only role in the training. In general, the smaller the parameter, the
more smooth the approximation.

The problem is in knowing what to make the regularization parameter.
If it is too large, the network may overfit. If it is too small, we may not
be modeling the data very well. Before considering automatic methods
to determine the regularization parameter, the following example shows
how to implement this new error:

net=newff (minmax(X),[5,1]);
net.performFcn="msereg’;
net.performParam.ratio=0.5 %This is gamma

Matlab has a Bayesian regularization technique installed that tries to
use Bayesian statistics to determine the best value of . In addition, it

162 CHAPTER 7. NEURAL NETWORKS

outputs a value called ” effective number of parameters” of the network.
If the effective number of parameters is far less than the number of
parameters used, it suggests that you use a simpler network for training.
Here is an example of its use:

net=newff (minmax(X),[5,1],{’tansig’, ’purelin’}, ’trainbr’);

That is, the trainbr stands for training with Bayesian regularization.

7.6 Example: Alphabet recognition

In this project, we look at how a neural network can be used for character
recognition. This is extremely useful for companies such as the U.S. Postal
Service, and they actually use neural networks to accomplish the reading of
address information.

We will do a simpler example. We will assume that a letter is represented
by a 5 x 7 matrix of values that are either 1 or 0. Therefore, the domain of
the neural network will be 35 dimensional.

The output of the neural network will be 26-dimensional, where there is
a 1 in the numerical position corresponding to its letter.

Our goal: Character recognition, even when the characters have been
contaminated by noise?.

Architectural Items

e We will utilize a 35 — 10 — 26 feed forward neural network using a
tansig transfer function for both the hidden and output layers.

o We will use a standard gradient descent to speed up training, traingdx
in place of the default trainlm.

e We will use a sum of squares error sse in place of the usual mean square
€IrTor mse.

e The training error goal should be set to 0.1.

2In real world systems, the contamination is not by noise but by people’s sloppy hand-
writing!

7.7. PROJECT 1: MUSHROOM CLASSIFICATION 163

e Use a maximum of 5000 training epochs.

e Additionally, we need to set a momentum term for the gradient descent
by typing: net.trainParam.mc=0.95

The Example

Run the example appcrl. Print and analyze the file appcrl.m. Annotate
each line of code to understand what is occuring.

7.7 Project 1: Mushroom Classification

In this project, we use a neural net to perform classification on mushroom
characteristics. That is, the neural net should input several characteristics
of a mushroom, and output whether or not that mushroom is poisonous or
edible.

The data consists of a matrix of 4062 entries each containing 22 char-
acteristics of a mushroom (i.e., cap size, cap shape, stalk color, etc.). The
range is either 0 or 1, depending on whether the mushroom is edible or not.
Obtain this data by loading mushroom_pre .mat.

Project Questions:

7.7.1 Discuss any problems there might be in using an RBF network.

7.7.2 Decide on how you are going to preprocess the data. Run a global KL
on the data to see how it is sitting in high dimensional space. Plot the
best two dimensional representation.

7.7.3 Retain 1,000 points of data for training, and reserve the rest for vali-
dation of the network model. Use as few nodes in the hidden layer as
necessary in order to get an error of 0 in classification.

7.7.4 Plot the results of the training. That is, first plot the network results
for those mushrooms corresponding to class 1 as blue dots. Plot the
network output for those mushrooms corresponding to class 0 as red
dots. You should see a wide seperation between red and blue.

7.7.5 Does preprocessing the data help? Rerun the network training, ex-
cept now use enough dimensions to retain 90% of the energy. Use the
projected data for the domain of your network.

164 CHAPTER 7. NEURAL NETWORKS

7.7.6 Turn in the script file for training the two networks, and any plots you
used.

7.8 Autoassociation Neural Networks

In the previous section, we saw that a three layer feedforward neural network
is capable of approximating any continuous function on a compact domain.

Suppose now that we want to reduce the dimensionality of the data set
X. This can be expressed as constructing homeomorphisms

G:XCRV Y CRM
H:YCRM - X CRY

We could build two separate neural networks, one for each function, if
we knew a priori the target values in the reduced dimensional space Y. For
the moment, suppose we are not concerned with the form of the reduced
representation. Then the compression paradigm can be reformulated: find
functions G and H as before, but we only require that the composition Go H
is the identity on X. We envision this composition as a single, large network
composed of two, three layer networks glued together, as shown in Figure
74.

In this figure, the input and output layers have N nodes, the bottle-
neck layer has M << N nodes, and the two hidden layers have some pre-
determined number of nodes. It has been shown in [6, 8, 22] that these hidden
layers are necessary to perform a nonlinear compression and decompression.
That is, without the nonlinear hidden layer, this network performs a linear
dimensionality reduction- for which we know the optimal solution is given by
its Karhunen-Loeve expansion.

This network has been widely used as a compression technique, and in a
recent work [14] several criteria were included in the training algorithm to
force certain specific representations on the bottleneck layer.

Matlab and the Autoassociator

In Matlab, it is simple to implement an autoassociative network, since we can
define any number of hidden layers. In this case, we have a 5 layer network,

7.8. AUTOASSOCIATION NEURAL NETWORKS

X1 TN

) output layer

demapping layer

bottleneck layer

() mapping layer

input layer

Figure 7.4: The bottleneck network architecture.

165

166 CHAPTER 7. NEURAL NETWORKS

so that if the input dimension is n, the hidden layer dimension is &, and the
target dimension is m, then the command:

net=newff (minmax(P), [k,m,k,n],{’tansig’,’tansig’,’tansig’,’purelin’});

will construct the network. Notice that the domain data is the same as
the range data.

Question: Why will the neural network not simply construct an identity
function, f(z) = 27

Project: Unknotting a knot

