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1 Background

Consider the now famous figure reproduced in Figure 1.
Does metabolism scale as mass, taken to the 3/4 power? Or should it, as

Euclidean geometry suggests, follow the argument for a sphere:
Since the surface area is 4πr2 and the volume is 4

3
πr3, then r = k1V

1/3.
This tells us that:

S.A. ∝ V 2/3

Key factors such as heat dissipation might suggest it...
In the 1980’s there was some argument as to whether the exponent was

3/4 or 2/3, and these arguments were based on the statistics used for the
data analysis- it was not model based. For example, Heusner (1982) stated
that, within a single species, metabolism does indeed scale to 2/3, so the
3/4 scaling factor was simply a statistical artifact1. This was followed by
a paper by Feldman and McMahon (1983) that stated that, while within a
single species, the scaling factor might be 2/3, but between species, 3/4 was
not an artifact of the statistics.

So which is correct? We discuss a new model for scaling below, but before
doing so, here are some scaling characteristics taken from data analysis for
mammals:

• The volume of blood scales with the mass, Vb ∝ M1.02

• The size of the heart scales with the mass, Mh ∝ M0.98

1See Exercises
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Figure 1: A logarithmic plot of metabolic rate versus body mass. Even
though body mass undergoes a 21 order of magnitude difference, we see that
the metabolic rate scales quite nicely with mass. (Reproduced from “Scaling
in Biology”, edited by Brown and West)

2



• The frequency of the heartbeat scales as: fh ∝ M−1/4

• The volume of the lungs scales with mass: Vl ∝ M1.04

• The tidal volume of the lungs scales as: Vt ∝ M1.04

• Oxygen consumption scales like M1/4

• The following characteristics are independent of mass (scale like M0):
radius of capillaries, velocity and pressure of the blood at both the
aorta and the capillaries.

To quote West, Brown and Enquist:

Allometric scaling laws are special because they express a sys-
tematic and universal simplicity in the most complex of all com-
plex systems. They provide rare examples of universal quantita-
tive laws in biology. Their origin presents a major challenge be-
cause their very existence, not to mention their common quarter-
powers, suggests the operation of a set of principles that are fun-
damental to all life.

Amazingly enough, it seems that longevity scales as M
1
4 so that this,

taken together with the scaling for the frequency of the heart, means that
the number of heartbeats in a lifetime is the same, about 1.5 × 109, for all
mammals, regardless of size. We should note that human beings now live far
beyond the age expectancy determined by their body mass (which would be
about 40 years)! Here’s the equation:

x beats

1 minute
· 526032 minutes

1 year
· y years

1 lifetime
≈ 1.5× 109

2 Introduction

Recently, a Universal Scaling Law has been introduced by West, Brown and
Enquist (2000) for Biology. In this paper, we summarize the model features.
As an overview, the basic idea is to use a fractal structure to model the
scaling of the circulatory system. This structure will then predict a scaling
of metabolism to mass,

metabolism ∝ Mass3/4
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Since metabolism plays a key role (and a key constraint) in the body, it
may not be surprising that other scaling relationships, taken from this one,
are multiples of 1/4. We begin with a discussion of the model, and the
construction of this scaling model. We will then conclude with some other
scaling models built off this.

3 Discussion

The Universal Scaling model (West et. al.) stems from the idea that, when
scaling up biological organisms, the key notion is that of a self-similar network
(e.g., blood arterial networks). In defining such a network, there are four
significant variables:

1. N is the total number of branchings in the network.

2. n is the number of branches at each node (independent of which node,
if the network is self-similar).

3. β is the ratio of the radii rk+1

rk
, which is independent of the node k if

the network is self-similar. We think of r0 as the radius of the aorta,
and rN as the radius of a capillary. The radius of a capillary, rN is
independent of mass (although N is dependent on mass).

4. γ is the ratio of the lengths lk+1

lk
, which is also independent of the node

k if the network is self-similar. We think of l0 as the length of the aorta,
lN is the length of a capillary.

For some benchmark values, in humans N ≈ 22, n = 3, and r0

rN
≈ 104.

There are two main scaling arguments that connect the constants to-
gether. They are:

γ = n−1/3, β = n−1/2

We will take these first.

Model Assumption 1: Volume Filling
The volume serviced by the blood should fill the entire volume:

V = nNVN

where V is the volume of the animal, VN is the volume serviced by a capillary.
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We make the simplifying assumption that the volume serviced at a capil-
lary, VN , scales like l3N (versus what it should be, πr2

N lN). For large N , VN−1

should be well approximated by l3N−1, and

VN

VN−1

≈
(

lN
lN−1

)3

= γ3

The authors argue that VN−1 = nVN follows from the volume filling re-
quirement. In that case, we have:

1

n
= γ3 so that γ = n−1/3

If the service volume was more generally d dimensional, then we could take
γ = n−1/d.

Model Assumption 2: Energy Minimization. This section could be
quite technical2, but the end result is that there is area preservation in the
branching so that:

πr2
k = nπr2

k+1

We will take the area preservation as an assumption. This gives:

β2 =
(

rk+1

rk

)2

=
1

n

or
β = n−1/2

We obtain our last scaling relationship by considering how the blood
volume scales. First, we write the total blood volume as the sum of all the
blood in the network. Note that at level k, there are nk branches, each having
radius rk and length lk.

Vb =
N∑

k=0

πnkr2
klk

In order to write this as a geometric series, recall that γ and β are scaling
coefficients so that we can write every length and radius in terms of the
length and radius of the aorta:

r1 = βr0, r2 = β2r0, r3 = β3r0, . . . ⇒ rk = βkr0

2We’ve left off some critical arguments to the full model in this simplification. The
interested reader should go to the full reference for all the details.
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l1 = γl0, l2 = γ2l0, l3 = γ3l0, . . . ⇒ lk = γkr0

Equivalently, we could write each term in terms of a capillary unit (which is
mass independent) rather than in terms of the aorta:

rk =

(
1

β

)N−k

rN , lk =

(
1

γ

)N−k

lN

Finally, recall that the sum of a geometric series is given by:

N∑
k=0

wk =
1− wN+1

1− w

Now we can rewrite the blood volume as a geometric series to relate total
blood volume to our constants γ, β and n (recall that N is the total number
of branchings in the network).

Vb =
πr2

N lN
(β2γ)N

·
N∑

k=0

(nβ2γ)k =
VN

(β2γ)N
· 1− (nβ2γ)N+1

1− (nβ2γ)

The appearance of β2γ is rather interesting, since it represents the ratio of
the volumes:

β2γ =
πr2

k+1lk+1

πr2
klk

=
Vk+1

Vk

Because we assume N to be somewhat large, we can make the approxi-
mation:

1− (nβ2γ)N+1 ≈ 1

so that

Vb ≈
(

VN

1− nβ2γ

)
·
(
β2γ

)−N

4 Putting it all Together

Now, it seems appropriate that the total volume of blood should scale with
the mass,

Vb ∝ M and Vb ∝ VN(β2γ)−N

However, we assume that VN is independent of mass3 , which means that:

(γβ2)−N ∝ M

3This is the third model assumption
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so that:
(γβ2)−Nb ∝ M b

for all b > 0. Now suppose that the metabolism rate, B is proportional to
some power of mass, M :

B ∝ Ma

Since metabolism is controlled by the cell’s fuel, we also have that metabolism
scales with the number volumes serviced by the capillaries (nN),

B ∝ nN

so that
nN ∝ Ma ∝ (γβ2)−Na

which implies that

n ∝ (γβ2)−a = (n−1/3 · n−1)−a = n
4
3
a

so that a = 3
4
.

5 A Summary of Some Results

• We have shown that metabolism B scales as M3/4.

• We can also obtain scaling rules for the aorta:

r0 = β−NrN , and β−2 = n ⇒ β−N = (nN)1/2

Now, nN ∝ B ∝ M3/4, so the radius of the aorta should scale as mass
to the power 1

2
· 3

4
= 3

8
, which is in good agreement with the data.

• Similarly, the length of the aorta scales as M1/4.

• It seems reasonable to assume that the tidal volume4, Vh, for an organ-
ism is proportional to its mass.

If we state that the rate of volume change in the blood at the aorta, Q̇0

is equal to the product of the tidal volume, Vh, times the heart rate, ν,

Q̇0 = Vhν

Then, since Q̇0 ∝ B ∝ M3/4, we get ν ∝ M−1/4, which is in good
agreement with the data.

4The volume of air inhaled and exhaled at each breath.
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A final word: This model is still very new and needs to be verified against
observed data. However, it seems that the model does explain existing data,
and it makes very specific predictions about several other measurements.
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