
1 Dimensional Analysis Notes

1.1 Introduction

Dimensional analysis is the analysis of a relationship by considering its units of
measure. For example, it might be meaningless to construct an equation like:

M = T

where M is measured in grams and T is measured in time. We will call such an
equation dimensionally inconsistent or dimensionally non-homogeneous. There-
fore, an equation that has the correct dimensions will be called dimensionally
homogeneous (or, dimensionally consistent).

Definition: We will use square brackets to denote the measure of a quantity.
The measures that are commonly used: M for mass, L for length, and T for
time.

Example: What are the units of measure for Force in:

F = ma

On the right side of the equation, [ma] = [m][a] = M · L
T 2 , so Force must have

units of measure as: MLT−2.

Some guiding principles in dimensional analysis:

1. The measure of a product is the product of the measures. We used this
in our example, where [ma] = [m][a].

2. Similarly, we can exponentiate dimensions. For example, [
√

m] =
√

[m] =
M1/2.

3. We can only add terms that have the same units of measure. For example,
we cannot add meters to minutes.

4. Physical relationships must be dimensionally consistent (for example, the
laws of physics).

Here are some common measures used in physics:

1. Velocity: [v] = L/T

2. Volume: [V ] = L3

3. Acceleration: [a] = L/T 2

4. Density (mass/vol): M/L3
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Some quantities do not have “dimensions”- they are called dimensionless
quantities. For example, angle measures are dimensionless- why? Consider a
circle of radius r, where an arclength s has been identified. Then the angle θ is
defined as:

θ =
s

r

so [θ] = L/L = 1. That is, for a dimensionless quantity x, [x] = 1. Some other
dimensionless quantities:

• all trigonometric functions

• exponential functions

• logarithms

• quantities which are simply counted, such as the number of people in the
room

• plain old numbers (like 2, π, etc.)

Example: What is the dimension of ω in sin(ωt) (where t is time)? The
dimension is [ω] = 1

T since the sine is dimensionless.
Example: Show that the following equation is dimensionally inconsistent,

if v is velocity, x is position, t is time:

v2 = t2 +
x

t

Exercise: The following is Poiseuille’s equation which describes the flow of
fluid through a cylindrical tube. The constants are: P is pressure difference1,
[P ] = ML−1T−2, r is radius, η is viscosity of the fluid, [η] = ML−1T−1, and l
is the length of the tube:

flow rate =
πPr4

8ηl

Here is another version of the same equation, where ρ is the density of the fluid,
[ρ] = ML−3,

flow rate =
πρPr4

8ηl

Use dimensional analysis to determine the dimension(s) of the flow rate- Are
these equations the same?

1.2 Dimensional Analysis for Modeling

Many times, we can extract relationships between things by analyzing the as-
sociated dimensions. The simplest way to describe this process may be through
an example. Here, we are modeling the drag force on an airplane, FD. Since
this is a force, [FD] = ML

T 2 . What quantities should FD depend on?

1Measured, for example, in lb/in2
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We will assume that FD should be jointly proportional to a cross-sectional
area, A, the velocity of the plane, v, and the density of the air, ρ (where [ρ] =
ML−3). What should the model be? We begin by setting up the desired model:

FD = kAavbρc

where we now need to determine the values of a, b, c. Assuming the constant k
is dimensionless,

[FD] = [k][A]a[v]b[ρ]c ⇒ ML

T 2
= (L2)a

(
L

T

)b (
M

L3

)c

from which we get:
MLT−2 = M cL2a−3c+bT−b

Equating powers so that the equation is dimensionally consistent gives:

c = 1, 1 = 2a− 3c + b − b = −2

so the solution is: a = 1, b = 2, c = 1. For joint proportions where the quantities
of interest are known, this technique works very well. We will revisit this topic
later, after we’ve looked at the Buckingham π Theorem.

1.3 Non-dimensionalization of an ODE

We use differential equations to describe how a certain behavior changes over
time. That “behavior” could be position or the size of a population, for example.

It is convenient to have the differential equation be free from the specific
units used to measure the behavior. For example, suppose I write a differential
equation describing velocity, and I assume length is in miles and time is in sec-
onds. I would have to change the differential equation (or change the variables)
if I have my measurements in kilometers and hours. But the dimensions I use
are confusing the point- the behavior should be qualitatively the same no matter
what units I use- and therefore, I should be able to express a differential equa-
tion without regards to units. This is what we mean by a differential equation
with dimensionless quantities.

Recall that, if x(t) describes position at time t, then [x] = L, x′(t) is velocity
with [x′] = LT−1, and x′′(t) is acceleration with [x′′] = LT−2.

Consider the differential equation:

d2x

dt2
=

−gR2

(x + R)2
, x(0) = 0,

dx

dt
(0) = V0

In this example, g is the acceleration due to gravity, R is the radius of the earth,
and V0 is initial velocity.

We will choose new variables so that the resulting differential equation has
no dimensions. First, we write down the variables and the dimensions:

[x] = L, [t] = T
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Now the parameters and those dimensions:

[g] =
L

T 2
, [V0] =

L

T
, [R] = L

Now, we will let y and τ be replacements for x and t. We will have to group x
with a set of parameters so that y will become dimensionless. One good choice:

y =
x

R

and similarly, group parameters with t to make τ dimensionless:

τ =
t

RV −1
0

=
tV0

R

Finally, we need the to compute the derivatives of y. In the end, we will
want y to depend on τ . For the term d2x/dt2, we have, by substitution:

d2x

dt2
=

d

dt

(
dx

dt

)
=

d

dt

(
d(yR)

dt

)
= R

d

dt

(
dy

dt

)
But, writing y as dependent on τ ,

R
d

dt

(
dy

dt

)
=

d

dt

(
dy

dτ
· dτ

dt

)
=

d

dt

(
dy

dτ
· V0

R

)
= V0

d

dt

(
dy

dτ

)
Now, y depends on τ , not t, so we’ll rewrite this last expression:

V0
d

dτ

(
dy

dτ

)
· dτ

dt
= V0

d2y

dτ2
· V0

R
=

V 2
0

R

d2y

dτ2

Now convert the other side of the differential equation:

−gR2

(x + R)2
=

−gR2

(yR + R)2
=

−g

(y + 1)2

Finally, we put everything together:(
V 2

0

−gR

)
d2y

dτ2
=

1
(y + 1)2

, y(0) = 0,
dy

dτ
(0) = 1

Note that the constant, V 2
0

−gR , is dimensionless.

1.3.1 EXAMPLE

In this case, consider the model for the angle of a nonlinear pendulum:

d2θ

dt2
= −g

l
sin(θ)
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Now θ and sin(θ) are dimensionless already, so we only need a new variable
for t. As before, we list the available parameters and try to come up with a
substitution that will be dimensionless:

[g] =
L

T 2
, [l] = L

and we’ll take, for example:

τ =
t√
l/g

=
√

g

l
t

and double-check that τ is dimensionless:

[τ ] =

√
[g]
[l]

[t] =

√
L
T 2

L
T = 1

Now we want θ to depend on τ rather than t, so we re-do the differential
equation using the chain rule:

d2θ

dt2
=

d

dt

(
dθ

dt

)
=

d

dt

(
dθ

dτ

dτ

dt

)
=

d

dt

(
dθ

dτ

√
g

l

)
=

√
g

l
· d

dt

(
dθ

dτ

)
And one more application of the chain rule:√

g

l
· d

dt

(
dθ

dτ

)
=

√
g

l
· d

dτ

(
dθ

dτ

)
dτ

dt
=

√
g

l

d2θ

dτ2
·
√

g

l

Putting it all together,
d2θ

dt
=

g

l

dθ

dτ2

so that the original differential equation becomes dimensionless:

g

l

d2θ

dτ2
= −g

l
sin(θ) ⇒ d2θ

dτ2
= − sin(θ)

This technique works for more general types of analysis. To summarize our
procedure for dimensional analysis:

1. List the variables and their dimensions.

2. List the available parameters and their dimensions.

3. Come up with new variables that will convert the originals to a dimen-
sionless form.

It might be surprising that we can do this without a differential equation or
an algebraic expression. In fact, we can use dimensional analysis to guess at the
relationships between variables. Here’s an example.
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1.4 EXAMPLE: Analyze the period of a pendulum

Our problem is to understand how the period of a pendulum depends on the
relevant physical parameters that describe its motion. We will first list these
parameters, then we’ll try to come up with dimensionless combinations of them.

mass m [m] = M
length l [l] = L
gravity g [g] = L

T 2

angle θ [θ] = 1
period P T

We’ll call the new variables π1, π2, π3, . . .. Again, our goal is to find combi-
nations of the parameters for each πj so that the result is dimensionless.

We can solve this problem by writing a generic term:

π = malbgcθdP e

so that:

[π] = [m]a[l]b[g]c[θ]d[P ]e = Ma · Lb · Lc

T 2c
· 1d · T e = MaLb+cT e−2c

with d free to be anything. For the other exponents,

a = 0
b + c = 0 ⇒ b = −c

e− 2c = 0 ⇒ e = 2c

So we see that we have a second free variable, c (that is, given c we can com-
pute b, e). We pause from our discussion for a moment to consider what the
implications are for the free variables.

1.4.1 What to do with the free variables?

From our analysis, we saw that a generic variable π had the form:

π = θd

(
gP 2

l

)c

Since c and d are free, I might formulate two specific dimensionless variables by
setting c = 1, d = 0 and c = 0, d = 1:

π1 = θ, π2 =
gP 2

l

Question: Is it possible to construct all other possible dimensionless variables
by taking a product of these two? Clearly, yes. We know that all dimensionless
products have the form:

θa

(
gP 2

l

)b

= πa
1πb

2
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In this case, we would say that π1, π2 form a complete set of variables.
What if I had made the unfortunate choice of taking c = 1, d = 1 for π1 and

c = 2, d = 2 for π2? Could I still get any dimensionless variable by taking a
product of π1 and π2? No. For example,

θ

(
gP 2

l

)2

= πa
1πb

2 =
(

θ · gP 2

l

)a (
θ2 · gP 2

l

)b

Equating exponents, you get: 1 = a + 2b, 2 = a + 2b... In this case, π1 and π2

do NOT form a complete set.
There is something connected to linear algebra here- The desired sets of

free variables should consist of linearly independent choices in order to obtain
a complete set. A simpler rule of thumb:

To get a complete set of dimensionless variables, if you have:

• One free variable: Set it to 1.

• Two free variables: Corresponds to two combinations for π, obtained by
taking the variables as (1, 0) and (0, 1).

• Three free variables: Take them as (1, 0, 0), (0, 1, 0) and (0, 0, 1).

and so on.
So far, we have analyzed the dimensionless quantities for the period of the

pendulum, and we know that the following form a complete set of dimensionless
variables:

π1 = θ, π2 =
gP 2

l

But how are they related? We can relate them by using a theorem- once we’ve
discussed it, we’ll return to our pendulum.

1.4.2 The Buckingham π Theorem:

An equation is dimensionally homogeneous if and only if it can be put into the
form:

f(π1, π2, . . . , πn) = 0

where {π1, π2, . . . , πn} is a complete set of dimensionless products.
In using this theorem, we will not normally give the exact functional form of

f - remember, we are interested in how the dimensions interact. However, once
we know what dimensions are involved, we might use actual data to find the
form for f .

At this point, you might wonder what use is this theorem? Even though we
do not know the actual function f , there is some analysis that we can do.

Going back to our previous example, we had

π1 = θ, π2 =
gP 2

l
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so that the equation governing the period of the pendulum (being dimensionally
homogeneous) must be of the form:

f(π1, π2) = f

(
θ,

gP 2

l

)
= 0

For now, we will assume that we can solve this equation for gP 2

l as a function
of θ. In the past, we have made such assumptions when we perform implicit
differentiation. We will not formalize when this assumption is accurate here- it
is a topic in real analysis called “The Implicit Function Theorem”.

With our assumption, we let h be the unknown function, and write:

gP 2

l
= h(θ)

or

P =

√
l

g
h(θ) =

√
l

g
· ĥ(θ)

This analysis tells us two things rather immediately:

The period of the pendulum does not depend on the mass. It does
depend on the square root of the length.

1.4.3 Example: The velocity of a raindrop

(This is taken from Giordano, Weir and Fox) Consider the problem of deter-
mining the terminal velocity of a raindrop falling from a motionless cloud. Can
we determine a general model using dimensional analysis?

First, list all the parameters on which we think this will depend, and we’ll
list the dimensions as well:

Variable v r g ρ µ
Dimension LT−1 L LT−2 ML−3 ML−1T−1

where r is the radius of the raindrop, ρ is the density of the air, and µ is the
viscosity.

We now need to form all the dimensionless products. A generic variable π
will have the form:

π = varbgcρdµe

so that:
1 = [π] = (LT−1)aLb(LT−2)c(ML−3)d(ML−1T−1)e

Equating exponents (to make the quantity dimensionless), we get three equa-
tions in five variables:

d + e = 0
a + b + c− 3d− e = 0

−a− 2c− e = 0
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Where a, d are arbitrary. For π1, we’ll take a = 1 and d = 0. For π2, take
a = 0, d = 1. Using these,

π1 = vr−1/2g−1/2, π2 = r3/2g1/2ρµ−1

(EXERCISE: Verify that these quantities are indeed dimensionless!)
From the Buckingham π Theorem,

f(π1, π2) = f
(
vr−1/2g−1/2, r3/2g1/2ρµ−1

)
= 0

Now we assume that this relationship can be solved for v:

vr−1/2g−1/2 = h(π2)

so that
v =

√
rg · h(π2)

This example highlights some of the features and drawbacks to dimensional
analysis. On the one hand, we can look at the interaction of variables based on
the dimensions, but at the end, we still do not have an exact expression relating
the variables.

1.4.4 A couple of final thoughts

Consider the special case if there is only one dimensionless product. Then, the
Buckingham π theorem states that there is a function f so that f(π) = 0. Thus,
π is a root to f , and we will assume that there is only one such root. This says
that π is a constant,

π = k

Suppose we wish to find a relationship between x and y1, . . . , yn, and we
can choose some free variables. We would normally choose a as one of the free
variables, so that x will appear in only one of the dimensionless products (so
that we can extract it with the Implicit Function Theorem).

1.4.5 Example: Wind Force on a Van on Highway

We wish to find a relationship between the force of the wind, F on a van driving
down the highway. We expect that the other variables effecting force will be:
the velocity of the van v, the surface area of the van exposed to the wind, A, and
the density of the air, ρ. Thus we have the following variables and dimensions:

Variable F v A ρ
Dimension MLT−2 LT−1 L2 ML−3

Set up the equations from:(
ML

T 2

)a (
L

T 2

)b

L2c

(
M

L3

)d
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so that:

a + d = 0
2a + b = 0

a + b + 2c− 3d = 0

We have three equations and four unknowns, so we choose a as the free variable
(because we’re going to want to isolate F ). Set a = 1 and solve for the other
variables to get: b = −2, c = −1, d = −1.

Thus, we have one dimensionless product,

π =
F

v2Aρ

so that the Buckingham π Theorem states there is an f so that

f

(
F

v2Aρ

)
= 0

By our assumption, that means that π = k, so that

F

v2Aρ
= k, or F = kv2Aρ

Note that this is the same equation as we got for the frictional drag force on an
airplane, where we assumed proportionality.

2 Exercises for Dimensional Analysis

1. Nondimensionalize the differential equation:

d2x

dt2
=

−gR2

(x + R)2
, x(0) = 0,

dx

dt
(0) = V0

In this example, [x] = L, g is the acceleration due to gravity, R is the
radius of the earth, and V0 is initial velocity.

Note that this is the same one as in the text- Try to do it without referring
back to it!

2. We will re-dimensionalize the pendulum. That is, we start with the nondi-
mensional form,

d2θ

dτ2
= − sin(θ)

with the substitution:

τ =
t√
l/g

=
√

g

l
t

Compute the differential equation for
d2θ

dt2
.
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3. Find a proportionality relationship using dimensional analysis of centrifu-
gal force F in terms of mass m, velocity v and radius r.

4. In fluid mechanics, the Reynolds number is a dimensionless number in-
volving fluid velocity v, density ρ, viscosity µ and a characteristic length
r. Find this dimensionless product of the variables, given the table of
dimensions below (Fill in the missing values first):

Variable v ρ µ r
Dimension ML−3 ML−1T−1

5. Certain stars, whose light and radial velocities undergo periodic vibrations,
are thought to be pulsing. It is hypothesized that the period t of pulsation
depends upon the star’s radius, r, its mass, m, and the gravitational
constant, G.

(a) Before going into this problem, as a simpler problem, compute the
units of force from: F = ma.

(b) Newton’s law of gravitation asserts that the attractive force between
two bodies is proportional to the product of their masses divided by
the distance between them:

F =
Gm1m2

r2

Compute the units of G from this.

(c) Going back to our star, express t as an appropriate product of powers
of m, r, and G.

6. Find the volume flow rate of blood flowing in an artery, dV
dt , as a function

of the pressure drop per unit length, P , the radius r, the density ρ and
the viscosity µ.

Here is a list of dimensions. Fill in the blanks:

Variable dV/dt P r ρ µ
Dimension M/(LT 2) L M/L3 M/(LT )

Now perform dimensional analysis and apply Buckingham’s π Theorem.

7. The power P delivered to a pump depends on the specific weight w of the
fluid pumped, the height h to which the fluid is pumped, and the fluid
flow rate q. Use dimensional analysis to determine an equation for power.
Below are listed the dimensions:

Variable P w h q
Dimension ML2T−3 ML−2T−2 L L3T−1
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