Review Questions: Sections 1.1-2.3

1. Find the general solution (in vector form) to the system:

$$x_1 + 3x_2 + x_3 + x_4 = -1$$

$$-2x_1 - 6x_2 - x_3 = 5$$

$$x_1 + 3x_2 + 2x_3 + 3x_4 = 2$$

- 2. Let A, B be $n \times n$. Show that, if AB is invertible, the so is A. (Hint: There is a matrix W so that (AB)W = I. Why?)
- 3. Let T be a linear transformation. Show that if $\{v_1, v_2, v_3\}$ are linearly dependent vectors, then $\{T(v_1), T(v_2), T(v_3)\}$ is linearly dependent.
- 4. If *H* is 7×7 and $H\boldsymbol{x} = \boldsymbol{v}$ is consistent for every \boldsymbol{v} in \mathbb{R}^7 , then is it possible for $H\boldsymbol{x} = \boldsymbol{v}$ to have more than one solution for some $\boldsymbol{v} \in \mathbb{R}^7$? Why or why not?
- 5. Show that the mapping T below is not linear:

$$T\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 4x_1 - 2x_2\\ 3x_2 + 1 \end{array}\right]$$

- 6. Let A be invertible. Show that, if $\{v_1, v_2, v_3\}$ is linearly independent, then $\{Av_1, Av_2, Av_3\}$ is linearly independent. Is this true if A is not invertible?
- 7. True or False, and explain: A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each vector in \mathbb{R}^n maps onto a unique vector in \mathbb{R}^m .
- 8. Let A be given below. Find three matrices C so that $AC = I_2$.

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix}$$

9. Choose h and k below so that the system has (a) no solution, (b) a unique solution, and (c) many solutions.

$$\begin{array}{rcl} x_1 - 3x_2 &= 1\\ 2x_1 - hx_2 &= k \end{array}$$

- 10. A system of equations with fewer equations than unknowns is called an *undetermined* system. Suppose that such a system happens to be consistent. Explain why there must be an infinite number of solutions.
- 11. Let A be an 3×4 matrix. Construct the elementary matrix E to perform:
 - (a) The row operation: $3r_2 + r_1 \rightarrow r_1$.
 - (b) The row operation: $-3r_3$
 - (c) The inverse of the row operation: $2r_1 + r_2 \rightarrow r_2$.
- 12. How do we approach the answer to the question: "Does the set of vectors $\{v_1, \ldots, v_p\}$ span \mathbb{R}^n ?"
- 13. Compare the answer of the previous problem with how we answer the question: "Is **b** in the span of $\{v_1, \ldots, v_p\}$?"
- 14. Let A be a 3×4 matrix, let y_1, y_2 be vectors, and let $w = y_1 + y_2$. Suppose that $y_1 = Ax_1$ and $y_2 = Ax_2$ for some vectors x_1 and x_2 .
 - (a) What size must $\boldsymbol{y}_1, \boldsymbol{y}_2, \boldsymbol{x}_1, \boldsymbol{x}_2$ be?
 - (b) Does $A\mathbf{x} = \mathbf{w}$ have a solution? Why or why not?

- 15. Describe (in parametric vector form) the solution set to: $x_1 4x_2 + 3x_3 = 0$. Compare this with the solution set to: $x_1 4x_2 + 3x_3 = 7$
- 16. True or False (and explain): Two vectors are linearly dependent if they lie on a line through the origin.
- 17. Find an example to contradict the following: If v_1, \ldots, v_4 are in \mathbb{R}^4 and v_3 is not a linear combination of v_1, v_2, v_4 , then $\{v_1, v_2, v_3, v_4\}$ is linearly independent.
- 18. Suppose that:

$$T\left(\left[\begin{array}{c}1\\2\end{array}\right]\right) = \left[\begin{array}{c}-3\\0\end{array}\right], \text{ and } T\left(\left[\begin{array}{c}-2\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\2\end{array}\right]$$

Find a matrix A so that $T(\mathbf{x}) = A\mathbf{x}$.

- 19. Let A be $n \times n$. If the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, do the columns of A span \mathbb{R}^n ? Why or why not? Is your answer different if A is $n \times m$?
- 20. Explain why A^2 is invertible whenever A is invertible.
- 21. Use a matrix inverse to solve:

$$3x_1 - 7x_2 = -4 -6x_1 + 13x_2 = 1$$

- 22. Suppose that for an $n \times n$ matrix A, the equation $A\boldsymbol{x} = \boldsymbol{b}$ has a solution for each \boldsymbol{b} in \mathbb{R}^n . Explain why A must be invertible. Does your answer change if A is $n \times m$?
- 23. True or False, and explain: If A is invertible, then the elementary row operations that reduce A to the identity also reduce A^{-1} to the identity.
- 24. Let A and B be given below. (a) Find the first and second columns of AB. (b) Find the (3, 1) entry of $B^T A$. (c) Determine the inverse of BB^T , if possible.

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 2 & -1 \\ 6 & -9 & 3 \end{bmatrix}$$

- 25. Let A be $m \times n$. Suppose that for some matrix C, CA = I. Show that the equation Ax = 0 has only the trivial solution.
- 26. Determine the matrix for the linear transformation that rotates vectors counterclockwise in \mathbb{R}^2 through the angle $\frac{\pi}{4}$.
- 27. Determine the matrix for the linear transformation T given below: $T(x_1, x_2, x_3, x_4) = 3x_1 4x_2 + 8x_4$
- 28. If T_1 and T_2 are linear transformations, show that the composition $T_1 \circ T_2$ is also a linear transformation.
- 29. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$, where $T(e_1) = (1, 4)$, $T(e_2) = (-2, 9)$, and $T(e_3) = (3, -8)$. Find a matrix A so that $T(\mathbf{x}) = A\mathbf{x}$.
- 30. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ so that $T(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{bmatrix} 1 & 1 \\ -2 & -1 \\ -1 & -3 \end{bmatrix}$$

Is T 1-1? Explain. Is T onto? Explain.

- 31. Suppose that A, B, C are $n \times n$ matrices with B invertible, and $I BAB^{-1} = C$. Solve this equation for A- Show your work, and if you invert a matrix, explain why it is invertible.
- 32. Let A be $m \times n$ with columns $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ with m, n > 1. Explain why, if columns of A are linearly independent, then $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Your explanation should show that you know the definition of $A\mathbf{x}$ and the definition of linear independence.