Review and	Concept I	Relationships
------------	-----------	---------------

To say a linear mapping is:	Is Equivalent to:	
Onto	Range = Codomain	
	Each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the cols of A	(I)
	$A\boldsymbol{x} = \boldsymbol{b}$ is consistent for every \boldsymbol{b}	(II)
	The columns of A span \mathbb{R}^m	(III)
	"A pivot in every row" (*)	(IV)
One-to-one	$\boldsymbol{x}_1 \neq \boldsymbol{x}_2 \Rightarrow A \boldsymbol{x}_1 \neq A \boldsymbol{x}_2$	
	$A \boldsymbol{x} = \boldsymbol{b}$ has at most one solution	(V)
	$A \boldsymbol{x} = \boldsymbol{0}$ has only the trivial solution	(VI)
	The columns of A are linearly independent.	(VII)
	"A pivot in every column" (*)	(VIII)

Let T be a linear mapping from \mathbb{R}^n to \mathbb{R}^m , expressed as $\mathbf{x} \to A\mathbf{x}$, where A is $m \times n$.

(*)- refers to the RREF of A

- 1. What is the definition of the span of a set of vectors?
- 2. What is the meaning behind "The set of vectors spans \mathbb{R}^{m} "?
- 3. Can a set of n vectors span \mathbb{R}^m if m > n? If m < n?
- 4. What is the definition of linear independence in a set of vectors?
- 5. What is the heuristic definition of linear independence?
- 6. Can a set of n vectors in \mathbb{R}^m be linearly independent if m > n? If m < n?
- 7. Show that (IV) implies (I), (II), (III).
- 8. Show that (VIII) implies (V), (VI), (VII).
- 9. In the case that A is square, why does any of (I)-(IV) imply that all 8 items are true? Does the same argument hold true if we only know that one of (V)-(VIII) hold? For the following two questions, T is the linear mapping, and the matrix A is the realization of T (so that $T(x) = A\mathbf{x}$)
- 10. If A is $m \times n$, m > n, Can T be 1 1? Can T be onto?
- 11. If A is $m \times n$, m < n, Can T be 1 1? Can T be onto?
- 12. Consider the statement: If AB is invertible, then B is invertible. (i) Show that this is FALSE in general (Come up with two matrices A, B). (ii) If A, B are $n \times n$, show that the statement is TRUE.
- 13. Show that, if T is a linear mapping and the only solution to T(x) = 0 is the trivial solution, then T must be 1 1 (NOTE: Use arguments applicable to *functions*, not just matrices).
- 14. Show (by using the definition of linear maps) that, if T is invertible, then the inverse, S is also linear.