Complex Number Summary Sheet

You should read the Appendix in the Linear Algebra book (and in the Calculus book) for more details. This is meant to simply summarize the results.

- 1. Definition: If z = a + bi, then Re(z) = a, and Im(a) = b.
- 2. Definition: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i = \sqrt{-1}\}$ =Space of complex numbers (it is a vector space).
- 3. The real numbers are a subspace of the complex numbers. (Set b=0 in a+bi)- That is, $\mathbb{R}\subset\mathbb{C}$
- 4. Definition: \mathbb{C}^n is the set of n-tuples of complex numbers, i.e., $\begin{bmatrix} a+bi\\c+di \end{bmatrix}\in\mathbb{C}^2$
- 5. Operations on \mathbb{C} : Let z = a + bi, w = c + di.

(a)
$$z + w = a + bi + c + di = (a + c) + (b + d)i$$

- (b) cz = ca + cbi (for $c \in \mathbb{R}$)
- (c) zw = (a+bi)(c+di) = ac + adi + bci bd = (ac bd) + (ad + bc)i
- (d) $\overline{z} = \overline{a + bi} = a bi$ (Complex conjugation)
- (e) $|z| = \sqrt{z\overline{z}} = \sqrt{(a+bi)(a-bi)} = \sqrt{a^2+b^2}$ =Modulus (or size) of z

(f)
$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \left(\frac{a}{a^2 + b^2}\right) + \left(\frac{b}{a^2 + b^2}\right)i$$

6. Definition: The argument of z is the angle $\theta \in (-\pi, \pi]$ so that θ is the angle the vector $(a, b)^T$ makes with the vector (1, 0) (translated to be between $-\pi$ and π). Formally,

$$\arg(z) = \begin{cases} \tan^{-1} \frac{b}{a} & \text{if} & a > 0, b \in \mathbb{R} \\ \frac{\pi}{2} & \text{if} & a = 0, b > 0 \\ -\frac{\pi}{2} & \text{if} & a = 0, b < 0 \\ \tan^{-1} \frac{b}{a} + \pi & \text{if} & a < 0, b > 0 \\ \tan^{-1} \frac{b}{a} - \pi & \text{if} & a < 0, b < 0 \end{cases}$$

The argument is not defined for z = 0.

In Matlab, the argument of a + bi is: atan2(b,a)

- 7. Definition: (Euler's Formula) $e^{i\theta} = \cos(\theta) + i\sin(\theta)$
- 8. The polar form of a + bi is: $re^{i\theta}$ again where $r = \sqrt{a^2 + b^2}$ and $\theta = \arg(z)$.
- 9. Multiplication in \mathbb{C} by z = a + bi corresponds to matrix multiplication in \mathbb{R}^2 by $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

For example, if w = c + di in \mathbb{C} , it corresponds to the vector $[c, d]^T \in \mathbb{R}^2$. Now, zw in \mathbb{C} gives: (a+bi)(c+di) = (ac-bd) + (ad+bc)i, which corresponds to the vector $[ac-bd, ad+bc]^T$. Alternatively in \mathbb{R}^2 ,

$$\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] \left[\begin{array}{c} c \\ d \end{array}\right] = \left[\begin{array}{c} ac - bd \\ ad + bc \end{array}\right]$$

1