Complex Numbers Homework

For questions 1 and 2, let:

 $z_1 = -1 + 3i$, $z_2 = 5i$ $z_3 = 2$ $z_4 = -1 - i$

- 1. Perform the given operation, and write the result as a + bi.
 - (a) $z_1 + z_4$ (b) $\frac{z_1}{z_4}$ (c) $z_1 z_2, z_1 z_4$ (d) $\operatorname{Re}(z_1), \operatorname{Re}(z_2), \operatorname{Im}(z_2), \operatorname{Im}(z_4)$ (e) $\overline{z}_1, \overline{z}_3, \overline{z}_2$ (f) $|z_1|, |z_3|$
- 2. Given the previous z_1, z_4 , write the complex multiplication $z_1 z_4$ as matrix-vector multiplication in \mathbb{R}^2 , and check your answer. Repeat the question with $z_4 z_1$ and $z_2 z_4$
- 3. Write the following in polar form, $re^{i\theta}$. If the argument is not a "nice" angle, use Matlab's atan2.

(a)
$$z_1 = 1 + i$$
 (b) $z_2 = -0.5 - 0.4i$ (c) $z_3 = 3 - 2i$ (d) $z_4 = 3$ (e) $z_5 = -i$

- 4. Using the polar forms from the previous question, compute z_1z_5 and z_2z_3 .
- 5. Download the "letter E" Matlab file from our class website. This is a short function that will generate points in the complex plane that forms a letter "E". To do this: Right click on the link, and save the file as "letterE.m" (without the quotes). In Matlab, type: X=letterE;

To view the graph, type in: plot(X);

Try performing some complex arithmetic to the points in X. For example,

- What happens to the points if you multiply the vector by a complex number- For example, $\frac{1}{3} + \frac{1}{2}i$? or 1 i?
- What happens to the points if they are transformed by some nonlinear function F(z)? For example, $F(z) = z^2$? or $F(z) = \sin(\frac{1}{5}z)$? ¹ or $F(z) = \ln(z)$? You don't have to answer the question, but do print out the results-
- 6. We can define the natural logarithm of a complex number, $a + bi = re^{i\theta}$ by:

$$\ln(a+bi) = \ln(r) + i\theta$$

By definition, $\ln(0)$ is not defined. This is an extension of the usual logarithm, where b = 0 and a > 0. In fact, using this definition of the log, we can compute the logarithm of negative numbers (which is not defined over the real numbers).

¹The sin(z) is defined much like the hyperbolic sine is defined, $sin(z) = (e^{iz} - e^{-iz})/2i$

For example, $\ln(-1) = \ln(1) + i\pi = i\pi$. This also says that $e^{i\pi} = e^{\ln(-1)} = -1$.

Given the four complex numbers in question 3, compute the logarithm of each (Hint: You've already computed the polar forms!)