Exam II: Determinants, Eigenvalues and Vector Spaces

1. Determinants

- (a) Computational Issues:
 - i. Be able to compute the 2×2 det.
 - ii. Be able to compute an $n \times n$ det. using cofactor expansions.
 - iii. For upper (lower) triangular matrices, the determinant is the product of the diagonal elements.
 - iv. Know the determinants of the elementary matrices corresponding to the elementary row operations.
 - v. Be able to compute an $n \times n$ determinant by first row reducing to upper triangular.
 - vi. Computational Theorems: (i.e., problems 39, 40 p. 194)
 - If A is $n \times n$, then $\det(k \cdot A) = k^n \det(A)$.
 - If A, B are $n \times n$, then $\det(AB) = \det(A) \cdot \det(B)$.
 - If A is $n \times n$, then $det(A^T) = det(A)$.
- (b) Conceptual Issues:
 - i. Know the effects of the three elementary row operations on the determinant.
 - ii. Know the relationship between invertibility and the determinant.

2. Eigenvalues and Eigenvectors

- (a) Definition: $A\boldsymbol{v} = \lambda \boldsymbol{v}$
- (b) Computation (or to show properties):

$$(A - \lambda I)\boldsymbol{v} = 0 \Leftrightarrow \det(A - \lambda I) = 0$$

First compute the eigenvalues, then for each of those, solve for the corresponding eigenvectors. We will only work with real eigenvalues for this exam.

- (c) Properties (Each of these can be shown using the properties of determinants. For practice, try it yourself!)
 - $\lambda = 0$ if and only if A is not invertible.
 - If λ is an eigenvalue of A, it is an eigenvalue of A^T .
 - If $A = PBP^{-1}$, then A and B have the same eigenvalues.
 - If A has n distinct eigenvalues, the eigenvectors are linearly independent (and thus form a basis for \mathbb{R}^n).

3. Vector Spaces

- (a) Definitions associated with General Vector Spaces.
 - Vector Space (Be able to check if something is a vector space, given the 10 axioms. You do not have to memorize the 10 axioms.)
 - Subspace
 - Spanning Set
 - Kernel (Also contrast a Kernel with a Null Space)
 - Linear Transformation, 1 1, Onto
 - Linear Independence
 - Basis
 - \mathcal{B} -Coordinates for x and the definitions of $[x]_{\mathcal{B}}, P_{\mathcal{B}}$.

- Isomorphism
- Dimension of a vector space (Including the special cases of zero and infinity)
- The rank of a matrix.
- (b) The Four Fundamental Subspaces: Col(A), Null(A), Row(A), $Col(A^T)$.
- (c) Specific Examples:
 - \mathbb{R}^n , \mathbb{P}^n , $M_{m \times n}$, C[a, b]
 - Standard Basis for ${\rm I\!R}^n,$ Standard Basis for ${\rm I\!P}^n$
- (d) Theorems for Vector Spaces (Note: These are summarized below, you should check each one to be sure you understand the specific conditions):
 - Theorem 1: Span $\{v_1, \ldots, v_p\}$ is a subspace.
 - The Spanning Set Theorem: If we remove a linearly dependent vector from a spanning set, the span is not changed. This process can be continued to find a Basis.
 - Theorem 7: The coordinate representation for a vector exists and is unique. (It exists because a basis *spans* the subspace, it is unique because a basis has *linearly independent* vectors.
 - Theorem 8: If a vector space V has a basis consisting of n vectors, then V is *isomorphic* to \mathbb{R}^n . Know what the isomorphism is.
 - Theorem 10: If one basis of V contains n vectors, then EVERY basis of V contains exactly n vectors. (This is clear if we think of V as being isomorphic to \mathbb{R}^n , and creates the concept of Dimension).
 - Theorem 12 (Finding a basis): If V is p-dimensional, then any set of p linearly independent vectors will form a basis for V. (Note: This also covers Theorem 11).
- (e) Theorems specific to a matrix A:
 - Theorems 2,3: Null(A) and Col(A) are subspaces.
 - Theorem 6 (Finding a basis for Col(A)): The pivot columns of A form a basis for Col(A).
 - Theorem 13 (Finding a basis for Row(A)): If B is the EF of A, the nonzero rows of B forms a basis for Row(A). Contrast this with finding a basis for Col(A).
 - Theorem 14: dim(Col(A)) = dim(Row(A)). This also implies that the dim(Col(A)) = dim(Col(A^T)). This gives the dimensions in the table explaining the dimensions of the four fundamental subspaces.
 - The Rank Theorem: rank(A) + dim(Null(A)) = n
- (f) Computational Issues
 - Solve problems like: Is w in the $\text{Span}(v_1, \ldots, v_p)$?
 - Compute a basis for Null(A), Col(A), Row(A).
 - Go from a spanning set to a basis.
 - Understand and use:

$$[x]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} x$$
 and $x = P_{\mathcal{B}}[x]_{\mathcal{B}}$

- Determine if a given vector is in one of the four fundamental subspaces.
- Compute the dimension (and basis) for a subspace.
- Know how to compute the dimensions of the four fundmental subspaces.