
SUMMARY: Find the Best Basis

1. PREPROCESSING:

We want to translate each image with m × n pixels as a vector with mn elements. It doesn’t matter
much how this is done, as long as you’re consistent. The main idea here is that the space of images
will be isomorphic to the space of vectors that we create. Here is a command that will take a single
image and create a vector- You will want to store the size of the original image so you can translate
the vector back into a picture:

[m,n]=size(Image);
v=Image(:);

We will assume that the matrix X is p × k which represents k images, each is m × n (p = mn). We
need to mean subtract so that the subspace is centered at the origin:

[p,k]=size(X);
mX=mean(X,2); %mX is a vector that is mn
A=X-repmat(mX,1,k);

To continue, we assume that the matrix A has the mean subtracted picture, and A is p× k.

2. GET A BASIS OF IMAGES:

We are computing the matrix U from the SVD of A = UΣV T . Depending on the sizes of p and k, you
might want to use different methods for computation. Your decision would normally depend on how
much memory the computer has.

• Method 1: Do the SVD directly: [U,S,V]=svd(A,0);
This will return a matrix U that is p× n, S is n× n, and V is n× n.

• Method 2: Do eigenvector decompositions. If k is very small and you don’t have much memory,
this technique will work quite well.

C=(1/p)*A’*A;
[V,S1,V]=svd(C); %I like the SVD rather than eig so that the

%elements of S1 are *ordered*
U1=A*V; %These are the columns of U- not scaled
nU=sqrt(sum(U1.*U1)); %This is a row of column norms
U=U1./repmat(nU,p,1); %This makes U have normalized columns

In each case, the matrix U was the desired result. Note that, in linear algebra notation, the coordinates
of each face with respect to the basis vectors in U is given by: UT A. The projection of every face into
the subspace spanned by the columns of U is UUT A. To properly visualize the results, we’ll also want
to add the mean back in. It might also be interesting to look at the ”error”- A− UUT A.

3. POSTPROCESSING: Visualizing the results

The basic command will be to make a vector back into a matrix, then visualize the matrix using Matlab.
In the following command, m,n have been defined previously, v is a vector that has mn elements, and
Image1 is the matrix output:

Image1=reshape(v,m,n);
imagesc(Image1);

Here’s a sequence of commands that will open several figures. It uses the matrix X, A, U , vector mX,
and scalars m,n as defined in (1) and (2)

1



figure(1) %Figure 1 has the first 4 (original) faces
colormap(gray)
for i=1:4

subplot(2,2,i);
imagesc(reshape(X(:,i),m,n));

end

figure(2) %Figure 2 is the "Mean Face"
colormap(gray);
imagesc(reshape(mX,m,n));

figure(3) %Visualize the first 4 basis images
colormap(gray);
for i=1:4

subplot(2,2,i); %Creates an array of plots in Figure 2
imagesc(reshape(U(:,i),m,n));

end

K=4; %CHANGE THIS NUMBER?
%Number of basis vectors to use for
% face reconstruction

Coords=U(:,1:K)’*A; %These are the coords of each face
% using the first K basis vectors

Recon=U(:,1:K)*Coords; %These are the reconstructed images
% using the first K basis vectors

figure(4) %These are the reconstructed faces
colormap(gray);
for i=1:4

subplot(2,2,i);
imagesc(reshape(Recon(:,i)+mX),m,n);

end

figure(5) %Visualize the projection of the faces to
%the plane (points are black triangles):

plot(Coords(1,:),Coords(2,:),’b^’);

2


