Linear Algebra- Final Exam Review

1. Let A be invertible. Show that, if $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent vectors, so are $A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3$. NOTE: It should be clear from your answer that you know the definition. SOLUTION: We need to show that the only solution to:

$$c_1 A \mathbf{v}_1 + c_2 A \mathbf{v}_2 + c_3 A \mathbf{v}_3 = 0$$

is the trivial solution. Factoring out the matrix A,

$$A(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3) = 0$$

Think of the form $A\hat{\mathbf{x}} = \mathbf{0}$. Since A is invertible, the only solution to this is $\hat{\mathbf{x}} = 0$, which implies that the only solution to the equation above is the solution to

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = 0$$

Which is (only) the trivial solution, since the vectors are linearly independent. (NOTE: Notice that if the original vectors had been linearly dependent, this last equation would have non-trivial solutions).

2. Find the line of best first for the data:

Let A be the matrix formed by a column of ones and a column containing the data in x. If we write the original system as

We form the normal equations $A^T A \beta = A^T \mathbf{y}$ -

$$A^{T}A = \begin{bmatrix} 14 & 6 \\ 6 & 4 \end{bmatrix} \Rightarrow (A^{T}A)^{-1} = \frac{1}{20} \begin{bmatrix} 4 & -6 \\ -6 & 14 \end{bmatrix}$$

The solution is $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{y} = \frac{1}{10} [4, 9]^T$

3. Let $A = \begin{bmatrix} -3 & 0 \\ 0 & 0 \end{bmatrix}$. (a) Is A orthogonally diagonalizable? If so, orthogonally diagonalize it! (b) Find the SVD of A.

SOLUTION: Yes it is (it is symmetric). The eigenvalues are the diagonal elements, $\lambda = -3, 0$. The eigenvectors are $[1, 0]^T$ and $[0, 1]^T$, respectively, so P = I.

Because one eigenvalue is negative, the SVD is slightly different. The singular values are

 $sigma = \sqrt{9} = 3$ and 0. We can put the negative sign with the matrix V to compensate (so that the factorization works out).

NOTE: The SVD of a matrix, like the eigenvector decomposition of a matrix, need not be unique. Any representatives from the eigenspaces will make the factorization work for the diagonalization, and in the SVD, \pm signs are chosen to be sure the diagonal entries of Σ are positive.

4. Let V be the vector space spanned by the functions:

$$f_1(x) = x \sin(x)$$
 $f_2(x) = x \cos(x)$ $f_3(x) = \sin(x)$ $f_4(x) = \cos(x)$

Define the operator $D: V \to V$ as the derivative.

(a) Find the matrix A of the operator D relative to the basis f_1, f_2, f_3, f_4 SOLUTION:

$$Df_1 = \sin(x) + x\cos(x) = f_3 + f_2$$

This implies that in coordinates,

$$D \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Similarly, we should find that:

$$D\begin{bmatrix} 0\\1\\0\\0\end{bmatrix} = \begin{bmatrix} -1\\0\\0\\1\end{bmatrix}, \quad D\begin{bmatrix} 0\\0\\1\\0\end{bmatrix} = \begin{bmatrix} 0\\0\\0\\1\end{bmatrix}, \quad D\begin{bmatrix} 0\\0\\0\\1\end{bmatrix} = \begin{bmatrix} 0\\0\\-1\\0\end{bmatrix}$$

The matrix for D is the matrix formed from the columns above (in order).

(b) Find the eigenvalues of A.

SOLUTION: Taking the determinant of $A - \lambda I$, we find that the characteristic polynomial is (I used the third column):

$$(\lambda^2 + 1)^2 = 0$$

so $\lambda = \pm i, \pm i$.

(c) Is the matrix A diagonalizable?

SOLUTION: No, not using real numbers.

5. Short answer:

(a) Let H be the subset of vectors in \mathbb{R}^3 consisting of those vectors whose first element is the sum of the second and third elements. Is H a subspace?

SOLUTION: One way of showing that a subset is a subspace is to show that the subspace can be represented by the span of some set of vectors. In this case,

$$\begin{bmatrix} a+b \\ a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Because H is the span of the given vectors, it is a subspace.

2

- (b) Explain why the image of a linear transformation $T:V\to W$ is a subspace of W SOLUTION: Maybe "Prove" would have been better than "Explain", since we want to go through the three parts:
 - i. $0 \in T(V)$ since $0 \in V$ and T(0) = 0.
 - ii. Let u, v be in T(V). Then there is an x, y in V so that T(x) = u and T(y) = v. Since V is a subspace, $x + y \in V$, and therefore T(x + y) = T(x) + T(y) = u + v so that $u + v \in T(V)$.
 - iii. Let $u \in T(V)$. Show that $cu \in T(V)$ for all scalars c. If $u \in T(V)$, there is an x in V so that T(x) = u. Since V is a subspace, $cu \in V$, and $T(cu) \in T(V)$. By linearity, this means $cT(u) \in T(V)$.

(OK, that probably should not have been in the short answer section)

(c) Is the following matrix diagonalizable? Explain. $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 8 \\ 0 & 0 & 13 \end{bmatrix}$

SOLUTION: Yes. The eigenvalues are all distinct, so the corresponding eigenvectors are linearly independent.

- (d) If the column space of an 8×4 matrix A is 3 dimensional, give the dimensions of the other three fundamental subspaces. Given these numbers, is it possible that the mapping $\mathbf{x} \to A\mathbf{x}$ is one to one? onto? SOLUTION: If the column space is 3-d, so is the row space. Therefore the null space (as a subspace of \mathbb{R}^4) is 1 dimensional and the null space of A^T is 5 dimensional. Since the null space has more than the zero vector, $A\mathbf{x} = \mathbf{0}$ has non-trivial solutions,
- Since the null space has more than the zero vector, $A\mathbf{x} = \mathbf{0}$ has non-trivial solutions, so the matrix mapping will not be 1-1. Since the column space is a three dimensional subspace of \mathbb{R}^8 , the mapping cannot be onto.
- 6. Find a basis for the null space, row space and column space of A, if $A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 5 & 5 \\ 0 & 0 & 3 & 3 \end{bmatrix}$

The basis for the column space is the set containing the first and third columns of A. A basis for the row space is the set of vectors $[1, 1, 0, 0]^T$, $[0, 0, 1, 1]^T$. A basis for the null space of A is $[-1, 1, 0, 0]^T$, $[0, 0, -1, 1]^T$.

7. Find an orthonormal basis for $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ using Gram-Schmidt (you might wait until the very end to normalize all vectors at once):

$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix},$$

Using Gram Schmidt (before normalization), we get

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix}$$

- 8. Find the QR factorization of the matrix $A[\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]$, defined in the previous problem. SOLUTION: Gets a bit messy by hand- We can write it symbolically as $R = Q^T A$, where the columns of Q are the normalized vectors from the previous problem.
- 9. Given the QR factorization of a matrix A, show that the least squares solution to $A\mathbf{x} = \mathbf{b}$ is $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$. (Hint: Start with $A\hat{\mathbf{x}}$, and see where you go).

SOLUTION: Using the hint, and substitute the expression:

$$A\hat{\mathbf{x}} = (QR)R^{-1}Q^T\mathbf{b} = QQ^T\mathbf{b}$$

which is the orthogonal projection of \mathbf{b} into the column space of Q, which was the column space of A. Therefore, we obtain $\hat{\mathbf{b}}$; the element of the column space closest to \mathbf{b} .

- 10. Using the QR factorization in the previous problem for matrix A, find the least squares solution to $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = [1, 0, 0, 0]^T$.
 - SOLUTION: As in the text (6.4), we see that even small problems can be messy- Try finding the solution in Matlab (sorry- I thought it would work out a little cleaner by hand).
- 11. Let \mathbb{P}_n be the vector space of polynomials of degree n or less. Let W_1 be the subset of \mathbb{P}_n consisting of $\mathbf{p}(t)$ so that $\mathbf{p}(0)\mathbf{p}(1)=0$. Let W_2 be the subset of \mathbb{P}_n consisting of $\mathbf{p}(t)$ so that $\mathbf{p}(2)=0$. Which of the two is a subspace of \mathbb{P}_n ?

SOLUTION: First consider W_1 . The zero polynomial is in W_1 . The condition states that either p(0) or p(1) must be zero, but not both- That could cause a problem. In fact, what happens with a sum? Let f(t) = p(t) + q(t). Then

$$f(0)f(1) = (p(0) + q(0))(p(1) + q(1)) = p(0)p(1) + p(0)q(1) + p(1)q(0) + q(0)q(1)$$

The middle terms will cause a problem. For example, how about p(0) = 4, p(1) = 0 and q(0) = 0, but q(1) = 3? They each satisfy the condition for W_1 , but the sum will not. Therefore, W_1 is not a subspace of \mathbb{P}_n .

For W_2 , we will have a subspace (check the three conditions).

12. For each of the following matrices, find the characteristic equation, the eigenvalues and a basis for each eigenspace:

$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

SOLUTION: For matrix A, $\lambda = 3, 5$. Eigenvectors are $[1, 1]^T$ and $[2, 1]^T$, respectively.

For matrix B, for $\lambda = 3+i$, an eigenvector is $[1, i]^T$. The other eigenvalue and eigenvector are the complex conjugates.

For matrix C, expand along the 2d row. $\lambda = 2$ is a double eigenvalue with eigenvectors $[0, 1, 0]^T$ and $[1, 0, 1]^T$. The third eigenvalue is $\lambda = 0$ with eigenvector $[-1, 0, 1]^T$.

13. Define
$$T: P_2 \to \mathbb{R}^3$$
 by: $T(p) = \begin{bmatrix} p(-1) \\ p(0) \\ p(1) \end{bmatrix}$

- (a) Find the image under T of p(t) = 5 + 3t. SOLUTION: $[2, 5, 8]^T$
- (b) Show that T is a linear transformation. SOLUTION: We show it using the definition.
 - i. Show that T(p+q) = T(p) + T(q):

$$T(p+q) = \begin{bmatrix} p(-1) + q(-1) \\ p(0) + q(0) \\ p(1) + q(1) \end{bmatrix} = \begin{bmatrix} p(-1) \\ p(0) \\ p(1) \end{bmatrix} + \begin{bmatrix} q(-1) \\ q(0) \\ q(1) \end{bmatrix} = T(p) + T(q)$$

ii. Show that T(cp) = cT(p) for all scalars c.

$$T(cp) = \begin{bmatrix} cp(-1) \\ cp(0) \\ cp(1) \end{bmatrix} = c \begin{bmatrix} p(-1) \\ p(0) \\ p(1) \end{bmatrix} = cT(p)$$

(c) Find the kernel of T. Does your answer imply that T is 1-1? Onto? (Review the meaning of these words: kernel, one-to-one, onto)

SOLUTION:

Since the kernel is the set of elements in the domain that map to zero, let's see what what the action of T is on an arbitrary polynomial. An arbitrary vector in P_2 is: $p(t) = at^2 + bt + c$, and:

$$T(at^{2} + bt + c) = \begin{bmatrix} a - b + c \\ c \\ a + b + c \end{bmatrix}$$

For this to be the zero vector, c = 0. Then a - b = 0 and a + b = 0, so a = 0, b = 0. Therefore, the only vector mapped to zero is the zero vector.

Side Remark: Recall that for any linear function T, if we are solving T(x) = y, then the solution can be written as $x = x_p + x_h$, where x_p is the particular solution (it solves $T(x_p) = y$), and $T(x_h) = 0$ (we said x_h is the homogeneous part of the solution). So the equation T(x) = y has at most one solution iff the kernel is only the zero vector (if T was realized as a matrix, we get our familiar setting).

Therefore, T is 1-1. The mapping T will also be onto (see the next part).

(d) Find the matrix for T relative to the basis $\{1, t, t^2\}$ for P_2 . (This means that the matrix will act on the *coordinates* of p).

You can verify that the matrix representation for T is:

$$\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]$$

From this we see that the matrix is invertible, so the mapping is both 1-1 and onto (as a mapping from \mathbb{R}^3 to \mathbb{R}^3).

14. Let **v** be a vector in \mathbb{R}^n so that $\|\mathbf{v}\| = 1$, and let $Q = I - 2\mathbf{v}\mathbf{v}^T$. Show (by direct computation) that $Q^2 = I$.

SOLUTION: This problem is to practice matrix algebra:

$$Q^2 = (I - 2\mathbf{v}\mathbf{v}^T)(I - 2\mathbf{v}\mathbf{v}^T) = I^2 - 2I\mathbf{v}\mathbf{v}^T - 2\mathbf{v}\mathbf{v}^TI + 4\mathbf{v}\mathbf{v}^T\mathbf{v}\mathbf{v}^T = I - 4\mathbf{v}\mathbf{v}^T + 4\mathbf{v}(1)\mathbf{v}^T = I$$

15. Let A be $m \times n$ and suppose there is a matrix C so that $AC = I_m$. Show that the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every **b**. Hint: Consider $AC\mathbf{b}$.

SOLUTION: Using the hint, we see that $AC\mathbf{b} = \mathbf{b}$. Therefore, given an arbitrary vector \mathbf{b} , the solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = C\mathbf{b}$.

16. If B has linearly dependent columns, show that AB has linearly dependent columns. Hint: Consider the null space.

SOLUTION: If B has linearly dependent columns, then the equation $B\mathbf{x} = \mathbf{0}$ has non-trivial solutions. Therefore, the equation $AB\mathbf{x} = \mathbf{0}$ has (the same) non-trivial solutions, and the columns of AB must be linearly dependent.

17. If λ is an eigenvalue of A, then show that it is an eigenvalue of A^T .

SOLUTION: Use the properties of determinants. Given

$$|A - \lambda I| = |(A - \lambda I)^T| = |A^T - \lambda I^T| = |A^T - \lambda I|$$

the solutions to $|A - \lambda I| = 0$ and $|A^T - \lambda I| = 0$ are exactly the same.

18. Let $\boldsymbol{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\boldsymbol{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, Let S be the parallelogram with vertices at $\boldsymbol{0}, \boldsymbol{u}, \boldsymbol{v}$, and $\boldsymbol{u} + v$. Compute the area of S.

SOLUTION: The area of the parallelogram formed by two vectors in \mathbb{R}^2 is the determinant of the matrix whose columns are those vectors. In this case, that would be 4.

19. Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
, $B = \begin{bmatrix} a+2g & b+2h & c+2i \\ d+3g & e+3h & f+3i \\ g & h & i \end{bmatrix}$, and $C = \begin{bmatrix} g & h & i \\ 2d & 2e & 2f \\ a & b & c \end{bmatrix}$.

If det(A) = 5, find det(B), det(C), det(BC)

SOLUTION: This question reviews the relationship between the determinant and row operations. The determinant of B is 5. The determinant of C is 10. The determinant of BC is 50.

20. Let $\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix} \begin{bmatrix} 4 \\ -6 \end{bmatrix} \right\}$, and $\mathcal{C} = \left\{ \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \end{bmatrix} \right\}$. Write down the matrices that take $[x]_C$ to $[x]_B$ and from $[x]_B$ to $[x]_C$.

SOLUTION: Since $\mathbf{x} = P_B[\mathbf{x}]_B$ and $\mathbf{x} = P_C[\mathbf{x}]_C$, then

$$[\mathbf{x}]_C = P_C^{-1} P_B[\mathbf{x}]_B$$
 $[\mathbf{x}]_B = P_B^{-1} P_C[\mathbf{x}]_C$

Doing the calculations,

$$P_C^{-1}P_B = \begin{bmatrix} -1/2 & 5 \\ -1 & 5 \end{bmatrix}$$
 $P_B^{-1}P_C = \begin{bmatrix} 2 & 2 \\ 2/5 & 1/5 \end{bmatrix}$

- 21. Define an *isomorphism:* A one-to-one linear transformation between vector spaces (see p. 251)
- 22. Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ -8 \end{bmatrix}, \begin{bmatrix} -3 \\ 7 \end{bmatrix} \right\}$$

Find at least two \mathcal{B} -coordinate vectors for $\mathbf{x} = [1, 1]^T$.

SOLUTION: The null space of the matrix is spanned by $[5, -1, 1]^T$ (found by row reduction. The particular part of the solution is $[5, -2, 0]^T$. So we can find an infinite number of solutions.

23. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for vector space V. Explain why the \mathcal{B} -coordinate vectors of $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ are the columns of the $n \times n$ identity matrix:

SOLUTION: $[\mathbf{b}_1]_B = [1, 0, 0, \dots, 0]^T$ because $\mathbf{b}_1 = 1\mathbf{b}_1 + 0\mathbf{b}_2 + \dots + 0\mathbf{b}_n$. A similar argument shows that $[\mathbf{b}_i]_B = \vec{\mathbf{e}}_i$.

24. Find the volume of the parallelepiped formed by $\mathbf{0}$, \mathbf{a} , \mathbf{b} , \mathbf{c} , $\mathbf{a} + \mathbf{b}$, $\mathbf{c} + \mathbf{b}$, $\mathbf{c} + \mathbf{a}$, and the sum of all three.

$$\mathbf{a} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{c} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

The volume is the determinant. In this case, expand along the second row, and get 3.