Example Questions, Exam 3, Math 300

1. Let the matrix A and its RREF, R_A , be given as below:

$$A = \begin{bmatrix} 1 & 1 & 7 & 2 & 2 \\ 3 & 0 & 9 & 3 & 4 \\ -3 & 1 & -5 & -2 & 3 \\ 2 & 2 & 14 & 4 & 2 \end{bmatrix} \quad R_A = \begin{bmatrix} 1 & 0 & 3 & 1 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

so that the columns of A are $\mathbf{a}_1, \dots, \mathbf{a}_5$.

Similarly, define Z and its RREF, R_Z , as:

$$Z = \begin{bmatrix} 4 & 5 & 3 & 4 \\ 5 & 6 & 5 & -3 \\ 10 & -3 & 9 & -106 \\ 4 & 10 & 2 & 44 \end{bmatrix} \quad R_z = \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Label the columns of Z as $\mathbf{z}_1, \dots, \mathbf{z}_5$.

- (a) Find the rank of A and a basis for the column space of A (use the notation \mathbf{a}_1 , etc.). Similarly, do the same for Z:
- (b) You'll notice that the rank of A is the rank of Z. Here is a row reduction using some columns of A and Z:

$$\begin{bmatrix} 1 & 1 & 2 & 4 & 5 & 3 \\ 3 & 0 & 4 & 5 & 6 & 5 \\ -3 & 1 & 3 & 10 & -3 & 9 \\ 2 & 2 & 2 & 4 & 10 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Are the subspaces spanned by the columns of A and Z equal?

- (c) Let \mathcal{B} and \mathcal{C} be the sets of basis vectors used for the column spaces of A, Z found in (a). Find the change of basis matrix $P_{\mathcal{B}\leftarrow\mathcal{Z}}$. HINT: Use the row reduction found in part (b).
- (d) Find the coordinates of \mathbf{z}_4 using the basis vectors in \mathcal{C} .
- (e) Use the previous two answers to find the coordinates of \mathbf{z}_4 in terms of the set \mathcal{B} :
- 2. Let A and its RREF be given as:

$$A = \begin{bmatrix} -1 & -5 & 3 & 9 \\ -48 & -40 & 24 & 92 \\ 94 & 70 & -42 & -166 \\ -48 & -40 & 24 & 92 \end{bmatrix} \qquad R_A = \begin{bmatrix} 1 & 0 & 0 & -1/2 \\ 0 & 1 & -3/5 & -17/10 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We also note two facts: $\lambda = 4$ is an eigenvalue of A, and $\mathbf{u} = [1, 0, 2, 0]^T$ is an eigenvector of A.

1

- (a) Find a basis for the null space of A:
- (b) Find a basis for the eigenspace E_4 :

- (c) What is the eigenvalue for the eigenvector **u**?
- (d) What is the characteristic polynomial of A?
- (e) Show that A is diagonalizable by finding an appropriate P and D.

3. Short Answer:

- (a) Show that if A^2 is the zero matrix, the only eigenvalue of A is zero.
- (b) If C is 4×5 , what is the largest possible rank of C? What is the smallest possible dimension of the null space of C?
- (c) If A is a 4×7 matrix with rank 3, find the dimensions of the four fundamental subspaces of A.
- (d) Suppose A is 3×3 , and **u** is an eigenvector of A corresponding to an eigenvalue of 7

Is **u** an eigenvector of 2I - A? If so, find the corresponding eigenvalue. If not, explain why not.

- (e) True or false? The columns of $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are linearly independent.
- 4. Let the subspace W be the span of $\mathbf{u}_1 = [-1, 2, 0]^T$, and $\mathbf{u}_2 = [4, 2, 5]^T$, and let $\mathbf{y} = [9, 7, 17]^T$.
 - (a) Find the orthogonal projection of y into the subspace W.
 - (b) Find the distance from y to the subspace W.
 - (c) Decompose \mathbf{y} as a sum of one vector from W and another from W^{\perp} .
 - (d) Let the matrix $U = [\mathbf{u}_1 \ \mathbf{u}_2]$. Is the projection of \mathbf{y} into the subspace W performed by $UU^T\mathbf{y}$? Why or why not (if not, fix U so that it is).
- 5. Let U be $m \times n$ with orthonormal columns. Show that the length of $U\mathbf{x}$ is the same as the length of \mathbf{x} .
- 6. Show that the eigenvalues of A and A^T are the same.
- 7. Show that if \mathbf{u} , \mathbf{v} are eigenvectors corresponding to distinct eigenvalues, then the vectors are linearly independent.
- 8. Show that the coordinate mapping (from n-dimensional vector space V to \mathbb{R}^n) is onto.
- 9. Find the eigenvalues and eigenspaces for $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$.
- 10. In 5.5, we're told that if A is 2×2 with $\lambda = a bi$, then we can write $A = PCP^{-1}$ for a certain P, C. Use this decomposition with $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$ (that is the same matrix as the previous problem).

2