Homework: Complex Numbers

Read over Appendix B, page A3.

- 1. What is the **argument** of a complex number? Illustrate your answer with the number $-1 + \sqrt{3}i$.
- 2. Perform the indicated operation, and write the result in standard form, a + bi:
 - (a) (1+i)(3-2i)
 - (b) $\frac{1}{i} \frac{2}{1+i}$
 - (c) |3-2i|
 - (d) If z = 3 + i, compute $\overline{z}z$, and 1/z.
- 3. If $A = \begin{bmatrix} 1+2i & 3-i \\ 3+i & 2-4i \end{bmatrix}$, show that the second row is 1-i times the first (and the matrix is therefore not invertible).
- 4. Points in the plane can be identified with complex numbers as: $(a, b) \leftrightarrow a + bi$. If we rotate the point (1,0) by 45 degrees, we get (0,1). Similarly, (0,1) rotated by 45 degrees becomes (-1,0). Using the identification, show that "Multiplication by i is rotation in the plane by 45 degrees", at least for the two points in question.
- 5. The remaining questions deal with **Euler's Formula**:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

(a) Use Euler's Formula to obtain the most beautiful theorem in mathematics ¹, Euler's Identity:

$$e^{i\pi} + 1 = 0$$

- (b) On page A6, we can replace the polar form: $z = |z|(\cos(\theta) + i\sin(\theta))$ by its more compact form, $z = |z|e^{i\theta}$. Write the following complex numbers in this form:
 - 1 + i
 - 3*i*
 - 4
 - 2-3i (use a calculator for θ).
- (c) Use your previous answer to write the product (1+i)(2-3i) in polar form:
- (d) Write e^{1-2i} in the form a + bi.

¹Mathematical Intelligencer poll