Miscellaneous from the HW

- 23, 1.2 Suppose a 3×5 coefficient matrix has three pivots. Is the system consistent?
 - Suppose a 5×3 coefficient matrix has three pivots. Is the system consistent?
 - Suppose a coefficient matrix has the maximum number of pivots possible. Is the system always going to be consistent?
- 28, 1.2 What would you have to know about the pivot columns in an augmented matrix in order to know that the linear system is consistent and has a unique solution? (Conclude with the Existence and Uniqueness Theorem)
- 23-24, 1.3 The span $\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin.
 - 25. Denote the columns of A by $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ below, and let $W = \text{span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$, where

$$A = \begin{bmatrix} 2 & 0 & 6 \\ 1 & 8 & 5 \\ 0 & -2 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

- (a) Is $\mathbf{b} \in \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$? How many vectors are in $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$?
- (b) Is $\mathbf{b} \in W$? How many vectors are in W?
- (c) Show that $\mathbf{a}_3 \in W$.
- 8. See figure below. Write $\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$ as linear combinations of \mathbf{u}, \mathbf{v} :

Figure for Exercises 7 and 8