
Introduction to Matlab

1 Before We Begin...

Starting the Matlab Program

Matlab physically resides on each of the computers in the Math Dept’s computer lab.

When you first log in: Go to the Application button at the TOP of the screen, then
choose Mathlab, and you should find the Matlab icon. Drag and drop the icon to the bar at
the TOP of the screen, and then you can start Matlab by pressing the icon.

Alternatively, open a terminal, then at the prompt, type matlab

SIDE REMARK: You can use Matlab from a computer that is not in the Math lab, but
you lose the ability to have a nice front-end, and you won’t be able to graph:

• Send your java-enabled web browser to math.whitman.edu and open a secure login.

• Log into math.whitman.edu NOTE: Matlab is not installed on this computer, so we
need an additional login:

• Log into another computer in the math lab, like ssh avarice

• Now type matlab -nojvm

1.1 If You Know Maple:

There are some significant differences between Matlab and Maple. Here are a few:

• In Maple, we save our work in Worksheets. In Matlab, we will use script files and
functions. This has some implications- If you’re working on a project, use Matlab’s
editor to type your commands into a script- Don’t type them live in the command
window.

• We use Maple for symbolic work (such as differentiation, integration, etc), and Matlab
is meant to be used for numerical work. (Note: It is possible to call Maple from Matlab
and vice-versa, but this is a more advanced topic).

• In Maple (until recently), the end of every line must have a semi-colon. In Matlab, if
you put in a semi-colon, the output is suppressed. If you do not put in a semi-colon,
the output is not suppressed (we will see this in the examples below).

1.2 How does Matlab work?

You can make Matlab do computations three different ways:

• Type commands directly into the keyboard.

1

• Have your Matlab commands typed into a separate text file (called a script file), and
then have Matlab read these commands in. This is very nice- it gives you documentation
and allows you to run similar computations several times without having to re-type the
commands. We will typically use script files to do homework problems.

• Define your own functions by typing a separate text file (called an m-file).

Saving your work

Matlab keeps track of your past history while you are typing on the keyboard, but for answering
homework, it is best to use a script file, which is just a text file with Matlab commands on it.
More on this later.

Matlab has a very nice text editor that you can use to type out and save Matlab functions
and scripts- To access the editor, type edit in the Matlab command window.

2 Introductory Commands

1. Arithmetic

Matlab understands all of the basic arithmetic functions, +, -, *, /, ^ are addition,
subtraction, multiplication, division and exponentiation. Type them in just as you would
write them. For example, 25 would be typed as 2^5.

2. Trigonometric Functions

Matlab understands the basic trig functions sine, cosine and tangent as sin , cos , tan .
So, for example, the sine of 3.1 would be typed as: sin(3.1)

The number π is used so frequently that Matlab has its (approximate) value built-in as
the constant pi. For example, sin(π) is typed as sin(pi). Note that π uses a lowercase
“P”.

3. Exponential and Logarithmic Functions

Matlab does not have the number e built-in as a constant (like π). To take the number
e to a power, use the functional form: ex = exp(x) So if I want the number e, I would
type exp(1), and so on.

For the natural log (log base e), use the notation log. For example, ln(3) is written as
log(3). We will only use the natural log- if in the future you want a different base, look
up the log command by typing help log.

4. Complex Numbers and Arithmetic

Matlab has complex arithmetic built-in. Either the letter i or j can be used to represent√
−1, but a word of caution is in order here: You can only use i or j for

√
−1 ONLY if you

have not previously defined them. If you think you’re going to use complex numbers, do
not use the letter i for anything but complex arithmetic! Example: (0.2+3*i)*(5+2*i)
will multiply the two complex numbers together (using complex arithmetic).

2

2.1 Helpful Administrative Commands

The following commands are useful as you begin to use Matlab more and more:

• The up arrow key: Saves you from re-typing a previous command.

clear Clears the workspace of all variables

clc Clears the command window

whos List all variables, and their sizes.

ls or dir List the contents of the current directory.

doc command List the help file for the function command. For example, to get help on
the sine function, type doc sin. Also available: help

demo Lists all the demonstration programs that Matlab came with- This is fun to
look at. We don’t have all of them; you can go to Matlab’s website to look at more:
www.mathworks.com.

3 Arrays of Data

The array (or matrix) is the basic data type in Matlab. Data entry is straightforward - For
example, to type in the matrix A below,

A=[1 2 3 4; 5 6 7 8];

or as:

A=[1 2 3 4

5 6 7 8];

Note the use of the semicolon: Inside a matrix, the semicolon indicates the end of a row
(outside the matrix, the semicolon suppresses Matlab output). We access elements of the
matrix in the usual way- for example, the (2, 3) element of A is written as A(2,3) in Matlab.

Rows and columns are entered in a corresponding way, as either a 1 × n matrix or as a
n× 1 matrix.

Commands using Linear Algebra

• Row reduction. Here’s an example:

A=[1 2 3 4;5 6 7 8];

rref(A)

• The rank of A: rank(A)

• Transpose: Apostrophe, as in AT is A’

• Inverse of a matrix A is: inv(A)

3

• The norm of a vector x is norm(x). For example,

x=[1;2;3];

norm(x)

Careful! It is possible to define the norm of a matrix, but we haven’t done that yet (so
Matlab will not give you an error).

• The dot product: There is a dot command, but better to use matrix multiplication.
That is, the following are equivalent:

x=[1;0;1], y=[-1;2;3];

dot(x,y)

x’*y

Similarly, the cross product is a Matlab command, but we typically wouldn’t use it.

• Eigenvalues and Eigenvectors: [V,D]=eig(A) produces V,D so that AV = V D (Warn-
ing: If A is not diagonalizable, V will not be invertible). Try these:

A=[1 2 ; 3 4]; %A is diagonalizable

[V,D]=eig(A)

A1=[1 2;0 1]; %A is not diagonalizable

[V,D]=eig(A1)

A2=[3 -sqrt(3);sqrt(3) 3]; %A has complex eigenvalues

[V,D]=eig(A2)

• Complex vectors (and scalars): real(x) returns the real part of the vector (or scalar or
matrix) stored as x. The command imag(x) returns the imaginary part (of the vector,
scalar or matrix stored in x).

Example:

Compute the projection of [1, 3,−1]T onto the vector [−1, 1, 1] (note two different ways of
entering a column vector and the apostrophe is for the transpose).

u=[1;3;-1]; v=[-1 1 1]’;

proj=((u’*v)/(v’*v))*v

Special Commands: The colon operator

• a:b

Produces a vector of integers from a to b in a row. For example, x = 2 : 9 puts x as a
row vector whose elements are the integers from 2 to 9.

• a:b:c

Produces the numbers from a to c by adding b each time. For example, 1 : 2 : 7 returns
the numbers 1, 3, 5, 7. Type the following into Matlab to see what you get: 1:2:8 and
1:0.5:6

4

• linspace(a,b,c)

Produces c numbers evenly spaced from the number a to the number b (inclusive). For
example, x=linspace(2,3.5,40) produces 40 numbers evenly spaced beginning with 2
and ending with 3.5.

SHORTCUT: Leaving off the third number c will give you 100 numbers between a and
b (That is, c = 100 is the default value.)

3.1 Matlab commands associated with Arrays

• Random arrays (handy if you just need some quick data!) A=rand(m,n) Produces an
m×n array of random numbers (uniformly distributed) between 0 and 1. A=randn(m,n)
produces an m×n array of random numbers (with a normal distribution) with zero mean
and unit variance.

• A=zeros(m,n) Produces an m× n array of zeros.

• A=ones(m,n) Produces an m× n array of ones.

• A=eye(n) Produces an n× n identity matrix.

• A=repmat(B,m,n) Matrix A is constructed from matrix (or vector) B by replicating B
m times down and n times across.

Example: Let B =

[
1 2
3 4

]
. Then A=repmat(B,2,3) creates the array:

A =

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

Matrix Arithmetic

• Transposition is denoted by the single quote character ’. That is, A’ = AT . (CAUTION:
If A contains complex numbers, then A’ is the conjugate transpose of A, sometimes
denoted as A∗ = ĀT)

• Scalar addition and multiplication works by adding or multiplying an array by the
constant. Examples: A+ 5 or A ∗ 5 or 3 ∗B, etc.

• Matrix Multiplication: Use the regular multiplication sign for standard matrix multipli-
cation. If A is m× n and B is n× p, then A*B is an m× p matrix, as we did in linear
algebra.

• Elementwise Multiplication. We can multiply and divide the elements of an array
A and an array B elementwise by A.*B and A./B

Exponentiation is done in a similar way. To square every element of an array A, we
would write: A.^2 This is the same as saying A.*A

5

• Typically, all functions should be written to act on a matrix elementwise, and Matlab’s
built in functions do (like sin(A) and exp(A). For the actual matrix functions of these
types, see the individual help files (doc exp, for example).

Accessing Submatrices

Let A be an m× n array of numbers. Then:
The notation: Yields:

A(i,j) The (i, j)th element

A(i,:) The entire ith row

A(:,j) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4× 2 submatrix

Example: Create the factorization PCP−1 from Section 5.5 of our text if matrix A is
given below. This is exercise 15, p. 341:

A=[1 5;-2 3];

[V,D]=eig(A)

P=[real(V(:,1)) imag(V(:,1))];

C=[real(D(1,1)) imag(D(1,1)); -imag(D(1,1)) real(D(1,1))];

P*C*inv(P) %We can check our work- We should get A back

Example: What kind of an array would the following command produce?

A=randn(6,6);

B=A([1,3,6],[2,5])

SOLUTION: The first line produces a matrix of random numbers that is 6× 6, and stores the
result as A. The next line produces a 3 × 2 matrix consisting of the following elements, and
stores the result in B.

A(1, 2) A(1, 5)
A(3, 2) A(3, 5)
A(6, 2) A(6, 5)

Example: Given the matrix A below, find a matrix J whose columns form a basis for the
column space of A, and a matrix H whose columns for a basis for the row space of A.

>> A=[1 -4 9 -7; -1 2 -4 1; 5 -6 10 7]

>> B=rref(A)

>> J=[A(:,1), A(:,2)]; %The first two columns are pivot columns

>> H=[B(1,:)’ B(2,:)’]; %The rows should be transposed to make cols.

6

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix. Before doing it,
we define [] as ”the empty array”: the array with nothing in it.

In the following, let A be a 4× 5 array, let b be a 1× 5 row, and c be a 4× 1 column.
Examples of use (each of these are independent from the previous):
The command: Produces:
A(1,:)=[]; Delete the first row.
A([1,3],:)=[]; Delete rows 1 and 3.
A(:,3)=[]; Delete column 3.
A(:,1:2:5)=[]; Delete the odd columns.
A(1,:)=b; Put b as row 1.
A(:,6)=c; Add c as the last column.
d=[c , A(:,1:3)]; d is c and columns 1− 3 of A.
A=[A(:,1), c, A(:,2:5)]; Insert c as column 2 of A, others shift 1 over.
A=[A(1,:); b; A(2:4,:)]; Insert b as row 2 of A, others shifted 1 down.

3.2 Exercises

1. What is the Matlab command to create the array x which holds the integers: 2, 5, 8, 11, . . . 89

2. (Referring to the array above) What would the Matlab command be that zeros out the
even-numbered indices (That is, x(2), x(4), x(6), . . .)?

3. What is the purpose of the semicolon at the end of a line?

4. If you type the following, you get an error. Why? (Hint: I’m trying to get a vector y

where each element is the square of the element in x):

x=[1 2 3 4];

y=x^2;

5. Solve the following exercises from our text using Matlab:

(a) Exercises 1, 3, 5, 7 on page 382.

(b) Exercises 11, 13 on page 382.

(c) Exercise 33 on page 383. For this, we need to produce a vector v in IR4 with
random integer entries. We might use the following to produce a 4× 1 vector with
integers from −10 to 10:

v=round(20*rand(4,1))-10;

(d) Exercise 35, page 393.

(e) Exercise 36, page 393. To normalize a matrix so that its columns each have length
1, we would write (this is for matrix U):

U= (whatever)

[m,n]=size(U);

d=sqrt(sum(U.*U)); %This is a row vector, 1 x n, with column norms.

U=U./repmat(d,m,1); %Elementwise division after creating a matrix from d.

7

