Example Questions, Exam 3, Math 300

1. (Corrected Copy) Let A and its RREF be given as:

$$A = \begin{bmatrix} -1 & -5 & 3 & 9\\ -48 & -40 & 24 & 92\\ 94 & 70 & -42 & -166\\ -48 & -40 & 24 & 92 \end{bmatrix}$$
 $\operatorname{rref}(A) = \begin{bmatrix} 2 & 0 & 0 & -1\\ 0 & 10 & -3 & -17\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$

We also note two facts: $\lambda = 4$ is an eigenvalue of A, and $\mathbf{u} = [1, 0, 2, 0]^T$ is an eigenvector of A.

- (a) Find a basis for the eigenspace E_4 :
- (b) What is the eigenvalue for the eigenvector **u**?
- (c) You might have noticed that the second and fourth rows are the same. Does that imply we have a certain eigenvalue? Find a basis for its eigenspace. To save you some time, we have included the RREF of A.
- (d) What is the characteristic polynomial of A?
- (e) Show that A is diagonalizable by finding an appropriate P and D.
- 2. Short Answer:
 - (a) Show that if A^2 is the zero matrix, the only eigenvalue of A is zero.
 - (b) (You may use a calculator) Consider $\frac{1-3i}{2+i}$.
 - Write the complex number in a + ib form.
 - Write the complex number in polar form: $re^{i\theta}$.
 - (c) Normalize the vector $[1, -2, 1, 1]^T$.
 - (d) Suppose A is 3×3 , and **u** is an eigenvector of A corresponding to an eigenvalue of 7. Is **u** an eigenvector of 2I - A? If so, find the corresponding eigenvalue. If not, explain why not.
 - (e) True or False? A matrix with orthonormal columns is an orthogonal matrix.
- 3. Show the following: If U, V are orthogonal matrices, then so is UV.
- 4. Let $A = \begin{bmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{bmatrix}$.
 - (a) Is A a regular stochastic matrix?
 - (b) Diagonalize the matrix A.
 - (c) Use the diagonalization to find a product for A^k .
 - (d) What happens to A^k as $k \to \infty$?
- 5. Let U be $m \times n$ with orthonormal columns. Show that the length of $U\mathbf{x}$ is the same as the length of \mathbf{x} . Use the first part of your answer to show that the angle between \mathbf{x} and \mathbf{y} is the same as the angle between $U\mathbf{x}$ and $U\mathbf{y}$.
- 6. Show that the eigenvalues of A and A^T are the same.
- 7. (Corrected Copy) Show that if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are eigenvectors corresponding to distinct eigenvalues, then the vectors are linearly independent.
- 8. Find the eigenvalues and bases for the eigenspaces if $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$.

9. Compute an appropriate factorization for the matrix $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$.

- 10. Let matrix A be $m \times n$. Show that the row space is orthogonal to the null space.
- 11. If $\mathbf{u} = [3, 2, -5, 0]$ and $\mathbf{v} = [1, 1, -1, 2]$, then compute:
 - (a) The distance between \mathbf{u} and \mathbf{v} .
 - (b) An approximate angle between \mathbf{u} and \mathbf{v} (use your calculator).
 - (c) The orthogonal projection of \mathbf{u} onto \mathbf{v}
- 12. Prove the Pythagorean Theorem for two vectors \mathbf{x} and \mathbf{y} :

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

- 13. On a given day, a student is either healthy or ill. Of the students that are healthy today, 95% will be healthy tomorrow. Of the students that are ill today, 55% will still be ill tomorrow.
 - (a) What is the stochastic matrix for this situation?
 - (b) If 20% of the students are ill on Monday, what percentage are likely to be ill on Wednesday?
- 14. If each row of A sums to the same number s, what is one eigenvalue and eigenvector? If each column of A sums to the same number s, does your previous answer hold?
- 15. If A is similar to B, show that they have the same eigenvalues.
- 16. Prove that if the set $\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$ form a basis for subspace W, and \mathbf{x} is orthogonal to each \mathbf{v}_i , for i = 1 to k, then \mathbf{x} is orthogonal to W. (Hint: Start with a generic vector $\mathbf{w} \in W$, and show that $\mathbf{x} \cdot \mathbf{w} = 0$.)
- 17. Prove that the eigenvalues of a triangular matrix are the entries on its main diagonal.
- 18. (More) True or False? If the statement is false and you can provide a counterexample to demonstrate this, then do so. If the statement is false and be can slightly modified so as to make it true then indicate how this may be done.
 - (a) If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
 - (b) If A is invertible, then A is diagonalizable.
 - (c) The orthogonal projection of **y** onto a vector **v** is the same as the orthogonal projection of **y** onto $c\mathbf{v}$ whenever $c \neq 0$.
 - (d) If A is an orthogonal matrix, then A^T is an orthogonal matrix.
 - (e) If A, B have the same eigenvalues, then they are similar.