Homework for 6.4

These were both done in Matlab- This was Gram-Schmidt and QR.

24. For the first matrix, use the Gram-Schmidt method. For example,

```
A=[10 13 7 11;

2 1 5 3;

6 3 13 3;

16 16 2 5;

2 1 5 7 ];

v1=A(:,1)./norm(A(:,1));

v2=A(:,2)- (A(:,2)*v1) * v1;

v2=v2./norm(v2);

v3=A(:,3)- (A(:,3)*v2) * v2 - (A(:,3)*v1) * v1;

v3=v3./norm(v3);

v4=A(:,4)- (A(:,4)*v3) * v3- (A(:,4)*v2) * v2- (A(:,4)*v1) * v1;

v4=v4./norm(v4);

U=[v1 v2 v3 v4]
```

25. For the QR factorization of A, we can use the matrix we just formed for Q, then solve for R: $R = Q^T A$. In Matlab, using the notation from the first problem,

```
Q=U;
R=Q'*A;
```

And we could verify by taking Q*R to see if the result is indeed the matrix A.