Some Proofs from Chapter 2

2.14 A proof by induction proceeds logically by (i) Prove the statement true for some base
case (typically 1 or 2), then (ii)-(iii): Assume that if the statement is true for case n,
then it must be true for n + 1. Notice the logic here- Once proven for n = 2, if we
prove that the transition from n to n + 1 is always true, then the statement is true for
n = 3. If it is true for n = 3, then it must also be true for n = 4, and so on.

The statement we wish to prove by induction is:

P(E,UE,U...UE,) < P(E\) + P(Ey) + ...+ P(E,)

First we'll prove it for a pair of sets (it is trivially true for only one set):

P(EyUEy;) = P(Ey)+ P(Ey) — P(E1NEy)
< P(Ey) + P(E»)

We might note that we get equality only if the sets are mutually exclusive (m.e.)

Next we prove the transition: Assuming the statement is true for n sets, it must be
true for n + 1 sets. That means that, for the transition, we assume that:

P(EyUE,U...UE,) < P(Ey)+ P(E3) + ...+ P(E,)
And from this, we must prove that:
P(E4UEU...UE,UFE, 1) < P(E))+ P(Ey))+ ...+ P(E,) + P(E,41)

So we start with the left-hand side of the expression. We will then group the sets in a
suggestive manner:

P(Ey\UE,U...UE,UE, 1) =P(F1UEU...UE,)UE, ;)=
P(EyUE,U...UE,)+ P(Ep1) — P(FATUEU...UE,)NE,) <
P(EyUE,U...UE,) 4+ P(E,1) <
P(E\)+ P(Ey) + ...+ P(E,) + P(E,.1)
2.22 Show that if A, B are independent then

e A’ and B are independent.

We need to show that P(A' N B) = P(A")P(B). Working backwards, let’s see if
we can find the right relationship:

P(ANB) =PA)P(B) What we want
=(1—-P(A))P(B) Convert A" to A
= P(B) — P(A)P(B)
= P(B)— P(ANB) Independence



There it is- Here is the correct direction now:

P(ANB)+P(ANB) = P(B) M.E. sets
P(AANnB) =P(B)—P(ANDB)
= P(B) — P(A)P(B) Indep of A, B
=(1—- P(A))P(B)
= P(A)P(B)
Therefore, A" and B are independent.
e A’ and B’ are independent. In this case, show that
P(AnB')=PA)P(B
We might be able to do this straight off:
P(ANnB') =P(AUB)) M.E. sets
=1—-P(AUB)
=1—(P(A)+ P(B)— P(ANnB)
=1-P(A) - P(B)+ P(A)P(B) Indep of A, B
= (1= P(A)) — P(B)(1 - P(A))
= P(A")P(B')

2.27 If A, B,C are independent, show that:

(a)

A and BN C are also independent.

SOLUTION: First you might write down what it is we need to show. In this case,
by the definition of independence, we need:

P(AN(BNC)) = P(APBNC)

We notice that, from independence of all sets, P(BNC) = P(B)P(C). I think
we can prove this:

P(An(BNC)) =P(ANnBNC) Standard set theory
= P(A)P(B)P(C) 3-way independence
= P(A)P(BNC) 2-way indep from the full indep

Conclusion: We have shown that A and B N C are independent, if A, B,C are
independent.

A and B U C are independent.

It is easiest to prove this by using two theorems-

e If A, B are independent, so are A" and B’ (Proved in class).
e Look at part (a).



We are done if we can show that A" and (B U ()’ are independent, from our first
theorem.

We see that: (BUC) = B'NC’. Notice that, by part (a), that if A’, B’ and C’
are independent, then so are A and B’ N C".

2.32 Prove Theorem 2.12: If the events By, Bs, ..., By constitute a partition of the sample
space S and P(B;) #0 for i = 1,2,... k, then for any event A in S we can write:

P(A) =) P(B;)P(A|B;)

=1

(Note the word partition, defined in a footnote on page 9, means that the B;’s are
mutually exclusive and the union is the entire sample space. Try to draw a Venn
diagram of the situation).

For any event A, since the sets B; form a partition, we can write A as a union of
mutually exclusive sets:

A=(ANB)U(ANBy)U...(AN By)
so that the probability becomes a sum:
P(A)=P(ANBy)+P(ANBy) +...P(AN By)

Each of these can be written as a conditional probability as long as the probability of
each B; is not zero. We check what we are trying to prove, and we notice that:

P(AN B;) = P(B;)P(A|B;)
so that the statement is proven by rewriting our previous sum:

P(A) = P(B1)P(A|By) + P(B2) P(A|By) + ... P(Bi) P(A| By)

1. Extra Practice: Prove that, if A and B are independent, then so are A and B’. (Try
to work it out before you look at the solution below)

SOLUTION: We are given that A, B are independent. This means that we are given:
P(ANB)= P(A)P(B)
We need to show that this implies:

P(ANB') = P(A)P(B')



We might work backwards a bit to see where it leads us:

P(ANB')= P(A)P(B') = P(A)(1 - P(B)) = P(A) — P(A)P(B)
Hmmm... This might be helpful. Notice that our last equality implies that:

P(A)=P(A)P(B)+ P(ANn B
but by independence, we can substitute P(AN B) for P(A)P(B):
P(A) = P(A)P(B)+ P(ANnB)=P(ANB)+ P(AN B’
This would be true as long as we can write
A=(ANB)U(ANDB)

and (AN B), (AN B’) are mutually exclusive (which are both true- Look at the Venn
Diagram, or Exercise 2.4, p. 30). There is our proof- Now we’ll go in the right direction
(backwards):

We know that AN B and AN B’ are mutually exclusive sets, and
A=(ANB)U(ANB)
Therefore,
P(A)=P(ANB)+ P(ANDB')
By the independence of A, B:
P(A)=P(ANB)+ P(ANB)=P(A)P(B)+ P(ANn B’
Work through the algebra:
P(ANB')=P(A)— P(A)P(B) = P(A)(1 - P(B)) = P(A)P(B)
Therefore, A and B’ are also independent.

. (Additional Exercise:) Show by means of numerical examples that P(B|A) + P(B|A’)
may or may not be equal to one. Additionally, try to prove that: P(A|B)+P(A'|B) =1

SOLUTION to the proof: Notice that by working backwards slightly,
P(ANnB) PA'NnB) PANB)+PANB)
P(A|B) + P(A'|B) = —
(AlB) + P(A'|B) i) P(B)

Do you see that the numerator is actually P(B)? Here is the direct proof:

We can write B as the union of mutually exclusive sets:
B=(BNAUMBNA)=(AnB)U(A'NB)
Therefore,
P(B) P(ANB)+ PA'NB)

1= 55 = 55 — P(A|B) + P(A'|B)




