
Some Proofs from Chapter 2

2.14 A proof by induction proceeds logically by (i) Prove the statement true for some base
case (typically 1 or 2), then (ii)-(iii): Assume that if the statement is true for case n,
then it must be true for n + 1. Notice the logic here- Once proven for n = 2, if we
prove that the transition from n to n + 1 is always true, then the statement is true for
n = 3. If it is true for n = 3, then it must also be true for n = 4, and so on.

The statement we wish to prove by induction is:

P (E1 ∪ E2 ∪ . . . ∪ En) ≤ P (E1) + P (E2) + . . . + P (En)

First we’ll prove it for a pair of sets (it is trivially true for only one set):

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2)
≤ P (E1) + P (E2)

We might note that we get equality only if the sets are mutually exclusive (m.e.)

Next we prove the transition: Assuming the statement is true for n sets, it must be
true for n + 1 sets. That means that, for the transition, we assume that:

P (E1 ∪ E2 ∪ . . . ∪ En) ≤ P (E1) + P (E2) + . . . + P (En)

And from this, we must prove that:

P (E1 ∪ E2 ∪ . . . ∪ En ∪ En+1) ≤ P (E1) + P (E2) + . . . + P (En) + P (En+1)

So we start with the left-hand side of the expression. We will then group the sets in a
suggestive manner:

P (E1 ∪ E2 ∪ . . . ∪ En ∪ En+1) = P ((E1 ∪ E2 ∪ . . . ∪ En) ∪ En+1) =

P (E1 ∪ E2 ∪ . . . ∪ En) + P (En+1)− P ((E1 ∪ E2 ∪ . . . ∪ En) ∩ En+1) ≤
P (E1 ∪ E2 ∪ . . . ∪ En) + P (En+1) ≤

P (E1) + P (E2) + . . . + P (En) + P (En+1)

2.22 Show that if A, B are independent then

• A′ and B are independent.

We need to show that P (A′ ∩ B) = P (A′)P (B). Working backwards, let’s see if
we can find the right relationship:

P (A′ ∩B) = P (A′)P (B) What we want
= (1− P (A))P (B) Convert A′ to A
= P (B)− P (A)P (B)
= P (B)− P (A ∩B) Independence



There it is- Here is the correct direction now:

P (A′ ∩B) + P (A ∩B) = P (B) M.E. sets
P (A′ ∩B) = P (B)− P (A ∩B)

= P (B)− P (A)P (B) Indep of A, B
= (1− P (A))P (B)
= P (A′)P (B)

Therefore, A′ and B are independent.

• A′ and B′ are independent. In this case, show that

P (A′ ∩B′) = P (A′)P (B′)

We might be able to do this straight off:

P (A′ ∩B′) = P ((A ∪B)′) M.E. sets
= 1− P (A ∪B)
= 1− (P (A) + P (B)− P (A ∩B)
= 1− P (A)− P (B) + P (A)P (B) Indep of A, B
= (1− P (A))− P (B)(1− P (A))
= P (A′)P (B′)

2.27 If A, B, C are independent, show that:

(a) A and B ∩ C are also independent.

SOLUTION: First you might write down what it is we need to show. In this case,
by the definition of independence, we need:

P (A ∩ (B ∩ C)) = P (A)P (B ∩ C)

We notice that, from independence of all sets, P (B ∩ C) = P (B)P (C). I think
we can prove this:

P (A ∩ (B ∩ C)) = P (A ∩B ∩ C) Standard set theory
= P (A)P (B)P (C) 3-way independence
= P (A)P (B ∩ C) 2-way indep from the full indep

Conclusion: We have shown that A and B ∩ C are independent, if A, B, C are
independent.

(b) A and B ∪ C are independent.

It is easiest to prove this by using two theorems-

• If A, B are independent, so are A′ and B′ (Proved in class).

• Look at part (a).



We are done if we can show that A′ and (B ∪C)′ are independent, from our first
theorem.

We see that: (B ∪ C)′ = B′ ∩ C ′. Notice that, by part (a), that if A′, B′ and C ′

are independent, then so are A′ and B′ ∩ C ′.

2.32 Prove Theorem 2.12: If the events B1, B2, . . . , Bk constitute a partition of the sample
space S and P (Bi) 6= 0 for i = 1, 2, . . . , k, then for any event A in S we can write:

P (A) =
k∑

i=1

P (Bi)P (A|Bi)

(Note the word partition, defined in a footnote on page 9, means that the Bi’s are
mutually exclusive and the union is the entire sample space. Try to draw a Venn
diagram of the situation).

For any event A, since the sets Bi form a partition, we can write A as a union of
mutually exclusive sets:

A = (A ∩B1) ∪ (A ∩B2) ∪ . . . (A ∩Bk)

so that the probability becomes a sum:

P (A) = P (A ∩B1) + P (A ∩B2) + . . . P (A ∩Bk)

Each of these can be written as a conditional probability as long as the probability of
each Bi is not zero. We check what we are trying to prove, and we notice that:

P (A ∩Bi) = P (Bi)P (A|Bi)

so that the statement is proven by rewriting our previous sum:

P (A) = P (B1)P (A|B1) + P (B2)P (A|B2) + . . . P (Bk)P (A|Bk)

1. Extra Practice: Prove that, if A and B are independent, then so are A and B′. (Try
to work it out before you look at the solution below)

SOLUTION: We are given that A, B are independent. This means that we are given:

P (A ∩B) = P (A)P (B)

We need to show that this implies:

P (A ∩B′) = P (A)P (B′)



We might work backwards a bit to see where it leads us:

P (A ∩B′) = P (A)P (B′) = P (A)(1− P (B)) = P (A)− P (A)P (B)

Hmmm... This might be helpful. Notice that our last equality implies that:

P (A) = P (A)P (B) + P (A ∩B′)

but by independence, we can substitute P (A ∩B) for P (A)P (B):

P (A) = P (A)P (B) + P (A ∩B′) = P (A ∩B) + P (A ∩B′)

This would be true as long as we can write

A = (A ∩B) ∪ (A ∩B′)

and (A ∩B), (A ∩B′) are mutually exclusive (which are both true- Look at the Venn
Diagram, or Exercise 2.4, p. 30). There is our proof- Now we’ll go in the right direction
(backwards):

We know that A ∩B and A ∩B′ are mutually exclusive sets, and

A = (A ∩B) ∪ (A ∩B′)

Therefore,
P (A) = P (A ∩B) + P (A ∩B′)

By the independence of A, B:

P (A) = P (A ∩B) + P (A ∩B′) = P (A)P (B) + P (A ∩B′)

Work through the algebra:

P (A ∩B′) = P (A)− P (A)P (B) = P (A)(1− P (B)) = P (A)P (B′)

Therefore, A and B′ are also independent.

2. (Additional Exercise:) Show by means of numerical examples that P (B|A) + P (B|A′)
may or may not be equal to one. Additionally, try to prove that: P (A|B)+P (A′|B) = 1

SOLUTION to the proof: Notice that by working backwards slightly,

P (A|B) + P (A′|B) =
P (A ∩B)

P (B)
+

P (A′ ∩B)

P (B)
=

P (A ∩B) + P (A′ ∩B)

P (B)

Do you see that the numerator is actually P (B)? Here is the direct proof:

We can write B as the union of mutually exclusive sets:

B = (B ∩ A) ∪ (B ∩ A′) = (A ∩B) ∪ (A′ ∩B)

Therefore,

1 =
P (B)

P (B)
=

P (A ∩B) + P (A′ ∩B)

P (B)
= P (A|B) + P (A′|B)


