
Misc Exercises from Chapter 4

4.21 Prove var(aX + b) = a2σ2

To keep our rvs straight, let Y = aX + b. Then we want to show that

σ2
Y = a2σ2

X

First, compute the mean, µY :

µY = E(aX + b) = aE(X) + b = aµX + b

Now,
Y − µy = aX + b− (aµX + b) = a(X − µX)

Therefore,

E((Y − µY )2) = E((a(X − µX))2) = a2E((X − µX)2)

which is another way to say that:

σ2
Y = a2σ2

X

4.24 Let f(x) = 2x−3 for x > 1 (zero elsewhere). Compute the mean and
variance, if they exist:

µ =
∫ ∞

−∞
xf(x) dx = 2

∫ ∞

1

x−2 dx = − 2
x

∣∣∣∣∞
1

= 0− (−2) = 2.

As in class, rather than computing σ2 directly, compute the second mo-
ment about the origin, E(X2), then use the theorem:

σ2 = E(X2)− µ2

So,

E(X2) = 2
∫ ∞

1

1
x

dx = 2 ln(x)

and the limit does not exist as x → ∞. Therefore, the variance will not
exist (but you probably anticipated that, since the original function was
2/x3?)

4.25 Show that formula in the book holds. HINT: Try doing the second part
first- Find formulas for µ3 and µ4 before looking for the general case:

µ3 = E((X − µ)3)

Expand this using the binomial theorem:

E(X3 − 3X2µ + 3Xµ2 − µ3) = E(X3)− 3E(X2)µ + 3E(X)µ2 − µ3

The straight binomial pattern is changed because E(X) = µ, which sim-
plifies to:

µ3 = µ′3 − 3µ′2µ + 3µ3 − µ3 = µ′3 − 3µ′2µ + 2µ3

Similarly, for µ′4, expand E((X − µ)4) (the line from Pascal’s triangle is
1, 4, 6, 4, 1):

E(X4 − 4X3µ + 6X2µ2 − 4Xµ3 + µ4) =

µ′4 − 4µ′3µ + 6µ′2µ
2 − 4µ4 + µ4 = µ′4 − 4µ′3µ + 6µ′2µ

2 − 3µ4
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And the general pattern is to expand (X − µ)r out using the binomial
theorem, then use the linearity of E, then combine the last two terms in
the sum:

Xr +
(

r

1

)
Xr−1(−µ) +

(
r

2

)
Xr−2(−µ)2+

+ · · ·+
(

r

r − 1

)
X(−µ)r−1 +

(
r

r

)
(−µ)r

The (−µ)i term gives us the (−1)i term from the formula in the text, and
taking the expected value of the sum of the last two terms should finish
us up:

E

((
r

r − 1

)
X(−µ)r−1 +

(
r

r

)
(−µ)r

)
= (−1)r−1rµr + (−1)rµr

Factor to get: (−1)r−1µr (r − 1), which is the last term of the formula in
the text.

4.29 Prove Markov’s Inequality: Let X be a nonnegative rv. Then for every
given number k > 0,

P (X ≥ k) ≤ E(X)
k

We will prove this in the case of a discrete distribution, and you’ll see how
it works. Given k > 0, we can write:

E(X) =
∑

x

f(x) =
∑
x<k

xf(x) +
∑
x≥k

xf(x) ≥
∑
x≥k

xf(x)

Note that to get that last inequality, we had to assume that X has only
nonnegative values!

Now, by replacing each of those x’s in the last sum by the constant k
(notice that k is smaller than all the x’s), we get a sum that is smaller,

E(X) ≥
∑
x≥k

xf(x) ≥
∑
x≥k

kf(x) = kP (X ≥ k)

4.34 Same issue as 4.33 (find the mgf), but with: f(x) = 1 for 0 < x < 1, zero
elsewhere.

M(t) = E(etX) =
∫ 1

0

etx dx =
1
t
etx

∣∣∣∣1
0

=
et − 1

t

We notice that the first two derivatives are:

M ′(t) =
et(t− 1) + 1

t2
M ′′(t) =

et(t2 − 2t + 2)− 2
t3

The derivatives do not exist at t = 0, which gives us a bit of a mystery.
There are two alternatives for dealing with it:

• Use l’Hospital’s rule, to take the limit as t → 0:

lim
t→0

M ′(t) = lim
t→0

tet + et − et

2t
=

1
2

lim
t→0

M ′′(t) = lim
t→0

(2t− 2)et + et(t2 − 2t + 2)
3t2

= lim
t→0

et

3
=

1
3
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• Use a Maclaurin series of et and pull off the necessary coefficients.
Begin with the exponential,

et = 1 + t +
1
2
t2 +

1
3!

t3 + · · ·

Subtract 1, then divide by t:

et − 1 = t +
1
2
t2 +

1
3!

t3 + · · ·

et − 1
t

= 1 +
1
2
t +

1
3!

t2 + · · ·

Think of this as if it were the Maclaurin series for a given function.
Then

M(0) = 1 M ′(0) =
1
2

M ′′(0)
2

=
1

3 · 2
so that µ′1 = 1

2 and µ′2 = 1
3 , just as before.

Now we can easily compute the variance,

σ2 = µ′2 − µ2 =
1
3
− 1

4
=

1
12

4.37 Given the pdf f(x) = 1
2e−|x|, find its mgf (form given in the problem):

M(t) = E(etX) =
1
2

∫ ∞

−∞
etxe−|x| dx =

Split the integral:

1
2

∫ 0

−∞
etxex dx+

1
2

∫ ∞

0

etxe−x dx =
1
2

∫ 0

−∞
e(t+1)x dx+

1
2

∫ ∞

0

e(t−1)x dx =

Taking these limits bit by bit (this is where we need to be careful):

1
2

(
1

t + 1
e(t+1)x

∣∣∣∣0
−∞

=
1
2

(
1

t + 1
− lim

A→−∞

e(t+1)A

t + 1

)
This limit exists when t+1 > 0 (since A is negative). Therefore, if t > −1,
then this part of the integral becomes 1/(2(t + 1)).

Similarly, the positive x−axis gives:

1
2

(
1

t− 1
e(t−1)x

∣∣∣∣∞
0

=
1
2

(
lim

A→∞

e(t−1)A

t− 1
− 1

t− 1

)
This limit will exist when t− 1 < 0, or when t < 1. In that case, this part
of the integral gives −1/(2(t− 1)).

Put it together to get the text’s suggestion. If −1 < t < 1, then

M(t) =
1

2(t + 1)
− 1

2(t− 1)
=

1
1− t2

4.38 We want to find the variance (so also the mean) to the previous problem
by using the mgf. In the first technique, get the Maclaurin series and read
off the coefficients. In the second, use derivatives directly.
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The series can be found by first taking the series for 1/(1− t). Notice that
this is the sum of a geometric series:

1
1− t

= 1 + t + t2 + t3 + · · · =
∞∑

n=0

tn

substitute t2 for t to get our series:

1
1− t2

= 1 + t2 + t4 + t6 + · · · = M(0) + M ′(0)t +
M ′′(0)

2
t2 + · · ·

(Note the typo in the solutions manual for the power series) so M ′(0) =
µ = 0 and mu′2 = E(X2) = M ′′(0) = 2. Since the mean is zero, this is
also the variance.

To use the derivative “technique”,

M(t) =
1

1− t2
M ′(t) =

2t

(1− t2)2
M ′′(t) =

6t2 + 2
(1− t2)3

from which we get the same numbers.

4.39 Prove Theorem 4.10, or we’ll prove the more general case (Part 3). That
is, let X be an rv, Y = aX + b. Then

MY (t) = E(eY t) = E(e(aX+b)t) = E(eX(at)ebt)

Now, ebt is constant with respect to the expected value operator (either
an integral or a sum in x), so it factors out, and we’re done:

E(eX(at)ebt) = ebtE(eX(at)) = ebtMX(at)

Notice that we already know what multiplying by a constant and a shift
does to the mean and variance. Does this result reflect those changes?
Let’s compute the mean and variance of Y using the mgf by computing
the derivatives (then evaluate at t = 0):

M ′
Y (t) = bebtMX(at) + ebtM ′

X(at) · a

M ′
Y (0) = bMX(0) + aM ′

X(0) = b · 1 + aµX = aµX + b

Similarly, for the second derivative:

M ′′
Y (0) = b2 + 2abµx + a2µ′2

4.40 Use the previous formula to solve this problem. The mgf is:

MX(t) = e3t+8t2

and Z = 1
4 (Z − 3) = 1

4Z − 3
4 . Then:

MZ(t) = e−3/4 tMX

(
t

4

)
= e−

3t
4 e3( t

4 )+8
(

t2
16

)
= e

1
2 t2

The series expansion is:

1 +
(

1
2
t2
)

+
1
2

(
1
2
t2
)3

+ · · ·

Therefore, µ = 0 and σ2 = 1 (since µ = 0).
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4.44 Compute the covariance of the pdf in Exercise 3.74. That is, f(x, y) =
(1/4)(2x + y), for 0 < x < 1, 0 < y < 2, zero elsewhere.

We might compute the marginal distributions first:

f1(x) =
1
4

∫ 2

0

2x + y dy =
1
4

(
2xy +

1
2
y2

∣∣∣∣2
0

=
1
4
(4x + 2− 0) = x +

1
2

f2(y) =
1
4

∫ 1

0

2x + y dx =
1
4
(
x2 + xy

∣∣1
0

=
1
4
(y + 1− 0) =

1
4
(y + 1)

Now, respective means:

µx =
∫ 1

0

x(x + 1/2) dx =
∫ 1

0

x2 +
1
2
x dx =

1
3

+
1
4

=
7
12

µy =
1
4

∫ 2

0

y(y + 1) dy =
1
4

(
1
3
y3 +

1
2
y2

∣∣∣∣2
0

=
7
6

We also need E(XY ):

E(XY ) =
1
4

∫ 1

0

∫ 2

0

xy(2x + y) dy dx =
∫ 1

0

2
3
x + x2 dx =

2
3

Therefore,

σxy = E(XY )− µxµy =
2
3
− 7

12
· 7
6

= − 1
72

4.47 The joint mgf for n rvs X1, . . . , Xn is

E(exp (t1X1 + . . . + tnXn))

∂

∂tj

( ∑
x1,...,xn

exp (t1x1 + . . . + tnxn) f(x1, . . . , xn)

)
=

∑
x1,...,xn

xje(t1x1+...+tnxn)f(x1, . . . , xn)

∣∣∣∣∣
t1=0,...,tn=0

=
∑

x1,...,xn

xjf(x1, . . . , xn)

And this is E(Xj). Similarly, the second partial derivative will give an
xixj in front of the pdf in the sum (or integral).

The joint pdf e−x−y for x > 0, y > 0, and zero elsewhere. The mgf is :∫ ∞

0

∫ ∞

0

et1x+t2ye−x−y dx dy =
∫ ∞

0

e−(1−t1)x dx

∫ ∞

0

e−(1−t2)y dy =

∫ ∞

0

e−(1−t1)x dx =
1

1− t1
e−(1−t1)x

∣∣∣∞
0

=
−1

1− t1

Convergence: Depends on t1 < 1.

Overall, the mgf is:

Mxy(t1, t2) =
1

(1− t1)(1− t2)
∂M

∂t1
=

1
(1− t1)2(1− t2)

Now compute the moments:
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(a) µx = E(X) =
∂M

∂t1
(0, 0) =

1
(1− t1)2(1− t2)

∣∣∣∣
0,0

= 1

(b) µy = E(Y ) =
∂M

∂t2
(0, 0) =

1
(1− t1)(1− t2)2

∣∣∣∣
0,0

= 1

(c) E(XY ) =
∂2M

∂t1∂t2
(0, 0) =

1
(1− t1)2(1− t2)2

∣∣∣∣
0,0

= 1

(d) σxy = E(XY ) − µxµy = 1 − 1 = 0 (Or, observe that X and Y are
independent, but we wanted to do out the computations this time).

4.48 If X1, X2, X3 are independent, and have means and vars given in the table,
find the mean and variance of Y and Z below.

X1 X2 X3

µ 4 9 3
σ2 3 7 5

• Y = 2X1 − 3X2 + 4X3

µy = E(Y ) = 2µx1 − 3µx2 + 4µx3 = 8− 27 + 12 = −7

In this exercise, assume independence, so that E((Xi − µxi
)(Xj −

µxj )) = 0:

σ2
y = 22σ2

x1
+ (−3)2σ2

x2
+ 42σ2

x3
= 4 · 3 + 9 · 7 + 16 · 5 = 155

• Z = X1 + 2X2 −X3

µz = µx1 + 2µx2 − µx3 = 4 + 18− 3 = 19

σ2
z = 3 + 4 · 7 + 5 = 36

4.49 Same as above, but drop the assumption of independence and let the
covariances be:

σ12 = 1 σ23 = −2 σ13 = −3

Let X̂j = Xj − µxj
. Then

σ2
y = E((2X̂1 − 3X̂2 + 4X̂3)2)

Multiply this out algebraically (leaving off the hats):

22X2
1 − 6X1X2 + 8X1X3 +

32X2
2 − 6X1X2 − 12X2X3

42X2
3 + 8X1X3 − 12X2X3

155 − 12 · 1 + 16 · (−3) − 24 · (−2) = 143

Note that we see 2aiajXiXj for each mixed term. If

Z = X1 + 2X2 −X3

then we will have:

36 + 2 · 2 · 1 + 2 · (1)(−1)(−3) + 2 · (2)(−1)(−2) = 54
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4.51 Prove Theorem 4.15: Given X1, . . . , Xn rvs, and Y1, Y2 are two linear
combinations of the rvs, give the covariance between Y1 and Y2.

Assume that Y1 and Y2 have been mean subtracted (this implies that each
of the n rvs have been mean subtracted). Then

σy1y2 = E(Y1Y2) = E((a1X1 + . . . anXn)(b1X1 + . . . bnXn))

Every term of this expansion will be of the form:

cijXiXj =
{

ajbjX
2
j if j = i

(aibj + ajbi)XiXj if i 6= j

=
{

ajbjσ
2
xj

if j = i

(aibj + ajbi)σxi,xj
if i 6= j

Sum all the terms to get the result.

4.53 Given three rvs such that:

σ2
x1

= 5 σx1x2 = 3 x2, x3 indep
σ2

x2
= 4 σx1x3 = −2

σ2
x3

= 7

Find the covariance of Y1, Y2 given in the top, bottom lines below resp.:

X1− 2X2+ 3X3

−2X1+ 3X2+ 4X3

(−2)5+ (4)(3)− 6(−2)
(−6)4+ (3)(3)+ 9(0)
(12)7 + 4(−2)+ (−8)(0)

Answer: 75

4.57 For the pdf from 3.74, f(x, y) = 1
4 (2x+y), 0 < x < 1, 0 < y < 2, and zero

elsewhere, find the conditional mean and variance of y, given x = 1/4.

First, we find the conditional pdf, evaluate at x = 1/4, then simply find
the usual mean and variance:

f(y|x) =
f(x, y)
f1(x)

and the marginal pdf, f1(x) is:∫ 2

0

1
4
(2x + y) dy = x +

1
2

Now,

f(y|x = 1/4) =
1
4 (y + 1

2 )
3/4

=
1
3
(y +

1
2
)

Now the mean:
1
3

∫ 2

0

y2 +
1
2
y dy =

11
9

and the variance from the moment about the origin:

E(Y 2)
1
3

∫ 2

0

y3 +
1
2
y2 dy =

16
9

Therefore,

σ2
y|x=1/4 =

16
9
− 112

92
=

23
81
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4.61 We’re computing the expected payoff. We note the uniform probability
for the rolls of the dice, so we’ll get $10.00 one third of the time, and pay
p dollars on the 1, 2, 5 or 6 (or 2/3 of the time):

10 · 1
3

+ p
2
3

=
10 + 2p

3

To make the game equitable must mean that our expected payoff is zero,
so p must be -$5.00

4.63 Contractor’s profit is f(x) = (x + 1)/18, [−1 < x < 5], zero elsewhere. I
suppose we’re assuming x is something like number of days? We want the
expected value: ∫ 5

−1

xf(x) dx =
1
18

∫ 5

−1

x2 + x dx = 3, 000

4.67 Adams and Smith are betting on repeated flips of a coin. At the start,
Adams has a dollars, Smith has b. At each flip, the loser pays the dollar
and the game continues until either player is “ruined”. Making use of the
fact that an equitable game has an expectation of zero, find the probability
that Adams wins before he loses all of his money.

Let p be the probability that Adams wins Smith’s b dollars before he loses
all his a dollars. Then the expected value would be given by:

pb + (1− p)(−a) = 0

from which we see that p = a
a+b

4.69 For practice, we’ll do both the standard technique using the definitions of
mean and variance, as well as mgf technique, where f = (1/4)e−x/4 for
x > 0.

E(X) =
1
4

∫ ∞

0

xe−
x
4 dx

+ x (1/4)e−x/4

− 1 −e−x/4

+ 0 4e−x/4

Therefore, we have:

−(x + 4)e−x/4
∣∣∣∞
0

= 0−−4 = 4

Similarly,

E(X2) =
1
4

∫ ∞

0

x2e−
x
4 dx

+ x2 (1/4)e−x/4

− 2x −e−x/4

+ 2 4e−x/4

− 0 −16e−x/4

Therefore, we have:

−(x2 + 8x + 32)e−x/4
∣∣∣∞
0

= 32

So that the mean is 4 and the variance is 32− 42 = 16.

Using the mgf technique for this problem, we would have:

MX(t) =
1
4

∫ ∞

0

exte−x/4 dx =
1
4

∫ ∞

0

e−x( 1
4−t) dx =

1
4
· −1

1
4 − t

e−x( 1
4−t)

∣∣∣∣∞
0
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We see that:
MX(t) =

1
1− 4t

Using the geometric series analogy,

MX(t) = 1 + (4t) + (4t)2 + (4t)3 + · · ·

Therefore, the mean is 4 and µ′2 = E(X2) = 16 · 2 = 32, which again gives
the variance as 16.

4.73 Given µ = 124 with σ = 7.5, find the probability that X will be between
64 and 184.

First, convert to a form so we can apply Chebyshev:

64 < X < 184 ⇒ 124− 60 < X < 124 + 60 ⇒ |X −µ| < 60 = 8σ

The probability of this is 1− 1
64 = 63

64 .

4.76 Hint: You might first set up pdfs for Z and W separately- Don’t.
That is, when we compute the covariance, we need to have the same
number of values for z and w. Best to write a small table to summarize
your information:

z w Prob
(T, T ) 0 0 0.36
(T,H) 0 1 0.24
(H,T ) 1 1 0.24
(H,H) 1 2 0.16

Now we can read off the arithmetic operations needed:

µx = 0 · 0.36 + 0 · 0.24 + 1 · 0.24 + 1 · 0.16 = 0.4

µy = 0 · 0.36 + 1 · 0.24 + 1 · 0.24 + 2 · 0.16 = 0.8

And the covariance (by way of E(WZ)):

E(WZ) = 0 · 0 · 0.36 + 0 · 1 · 0.24 + 1 · 1 · 0.24 + 1 · 2 · 0.16 = 0.56

Therefore,
σwz = 0.56− 0.4 · 0.8 = 0.24

4.77 Oops! Not assigned, but a nice easy problem...

The inside diameter of a tube is a rv with a mean of 3 inches and a std of
0.02 in. The thickness of the tube is a rv with a mean of 0.3 inches and a
std of 0.0005 inches. The two rvs are independent.

Find the mean and std of the outside diameter of the tube.

SOLUTION: If X is the rv for the inside diameter, and Y is the rv for
the thickness, then let Z be the rv for the outside diameter of the tube,
where we see that (remember, diameters and not radii):

Z = X + 2Y

where µx = 3, σx = 0.02, µy = 0.3 and σy = 0.0005. Also, independence
implies that the covariance is zero.

The mean and variance of Z:

µz = µx + 2µy = 3.6 inches

σ2
z = σ2

x + 4σ2
y = 0.000401

so that the standard deviation is approx. 0.02
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4.78 Let Li be the length of the ith brick, so that µLi = 8 and σLi = 0.1. Let
Mi be the width of the mortar between i and i+1 bricks, µMi = 0.5 and
σMi

= 0.003.

Now,

W =
50∑

i=1

Li +
49∑

k=1

Mk ⇒ µW = 50µL + 49µM = 424.5 in ≈ 35.4 ft

and

σ2
W =

50∑
k=1

σ2
L +

49∑
k=1

σ2
M ⇒ σ2

W = 50 · (0.1)2 + 49 · (0.03)2 = .5441

so that σW ≈ 0.7376

Extra: Compare this result to that you get if

W = 50L + 49M

(By the way, why don’t we use this as the model? This would imply that
every brick has exactly the same size!)

No change in the mean, but a rather large change in the variance:

σ2
W = 502(0.12) + 492(0.032) = 27.169 σW = 5.211

Where did this come from? In the proof, notice what we said about
cov(Xi, Xj). If Xi and Xj are independent rvs, this quantity is zero (like
for this problem). If Xi is the SAME as Xj , then the covariance is not
zero, it is the variance.

4.79 If heads is a success when we flip a coin, getting a six is a success when
we roll a die, and getting an ace from an ordinary deck of cards is success,
then find the mean and standard deviation of the total number of successes
when we:

(a) Flip, roll, and draw.

(b) Flip thrice, roll twice and draw once.

Most of this problem is in the construction of the pieces that are needed:
Let X be the event of Heads, Y be 6 on the die, and Z be an ace.

In modelling each distribution, think of using 0 for failure and 1 for success,
as we did in the examples below:

• In the coin flip, let x = 0 be failure (getting a Tail), and x = 1 be
success (getting a Head). Then P (x = 0) = 1

2 and P (x = 1) = 1
2 .

Therefore,

µX = 0 · 1
2

+ 1 · 1
2

=
1
2

E(X2) = 02 · 1
2

+ 12 · 1
2

=
1
2

σ2
X =

1
2
− 1

4
=

1
4

Similarly,
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• In the roll of the die, let y = 0 be failure (getting anything except
6), and x = 1 be success (getting a 6). Then P (x = 0) = 5

6 and
P (x = 1) = 1

6 . Therefore,

µY = 0 · 5
6

+ 1 · 1
6

=
1
6

E(Y 2) = 02 · 5
6

+ 12 · 1
6

=
1
6

σ2
Y =

1
6
− 1

36
=

5
36

• In drawing an Ace, let z = 0 be failure (getting anything except
A), and x = 1 be success (getting an A). Then P (x = 0) = 12

13 and
P (x = 1) = 1

13 . Therefore,

µZ = 0 · 12
13

+ 1 · 1
13

=
1
13

E(Z2) = 02 · 12
13

+ 12 · 1
13

=
1
13

σ2
Z =

1
13
− 1

169
=

12
169

Now we interpret parts A, B and substitute in the appropriate values:

(a) A flip, roll and draw: W = X + Y + Z. Noting that these events are
independent,

µW = µX + µY + µZ =
1
4

+
1
6

+
1
13

=
58
78

= 0.74

Independence means we can sum the variances:

σ2
W =

1
4

+
5
36

+
12
169

= 0.46 σW ≈ 0.68

(b) In this case, W = X1 + X2 + X3 + Y1 + Y2 + Z, where Xi is the coin
toss, Yi is the roll of the dice. Notice that this is different than saying

W = 3X + 2Y + Z

which implies that we each of the three X’s are the same, etc. (Also
see the note from Problem 4.78) This difference again does not appear
in the mean, but has a significant impact on the standard deviation!

µW = 3µX + 2µY + µZ =
3
4

+
1
3

+
1
13

=
149
78

σ2
W = σ2

x + σ2
X + σ2

X + σ2
Y + σ2

Y + σ2
Z

(We write it this way to emphasize the difference between this and:

σ2
W = 32σ2

x + 22σ2
y + σ2

z

which would be the variance if W = 3X + 2Y + Z). Substitution
gives 1.099 for the variance, 1.05 for the standard deviation.
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