
Review Solutions, Exam 3, Math 338

1. Define a random sample: A random sample is a collection of random
variables, typically indexed as X1, . . . , Xn.

2. Why is the t−distribution used in association with sampling? Why is
the χ2 distribution used? (In particular, pay attention to any conditions
on their use)

The t−distribution is typically used to model the standardized rv:

T =
X − µ

s/
√

n

especially when n is small and the variance σ is unknown. In that case,
we estimate σ using the sample mean s. If the random sample comes
from a normal distribution, this distribution is exact; otherwise, we use
this as an approximate distribution.

As a comparison, if the random sample comes from a normal distribu-
tion and σ is known, then

Z =
X − µ

σ/
√

n

follows a standard normal distribution.

The χ2 distribution is used to model the random variable S2 from a
random sample. In particular, if the random sample of size n comes
from a normal distribution, then

(n− 1)S2

σ2

follows a χ2 distribution with n− 1 degrees of freedom. If the random
sample does not come from a normal distribution, we may be able to
use χ2 as an estimate, which gets better as n increases.

3. The four principal game fish in Clear Lake are bluegills, crappie, small-
mouth bass and large-mouth bass. The weights of these, amazingly,
has a Chi-square distribution with the following parameters:

Name deg. of freedom
Bluegills 8 oz
Crappie 13 oz
Small MB 1 lb 3 oz
Large MB 3 lb 2 oz

where one pound is 16 oz. Assuming that the numbers of these fishes
are independent, if Fisherperson Terry catches 6 bluegills, 5 crappie, 3
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small mouth bass, 3 large mouth bass, what is the probability that the
total weight of these 17 fish is over 19 pounds?

The fish are particular values of random variables from different dis-
tributions. Call the random variables B, C, S, L where, for example,
B1, B2, . . . , B6 is a random sample of Bluegills.

The random variable we’re interested in is the total weight. Symboli-
cally, we let X be that rv:

X =
6∑

k=1

Bk +
5∑

k=1

Ck +
3∑

k=1

Sk +
3∑

k=1

Lk

The sum of χ2 rvs is a χ2 rv, and the degrees of freedom are summable.
Therefore X is a random variable that is χ2, and its degrees of freedom
is:

6 · 8 + 5 · 13 + 3 · 20 + 3 · 50 = 323

With this many degrees of freedom, we’ll use the Central Limit Theo-
rem to justify a normal approximation of

1
n
X − µ

σ/
√

n

We know the theoretical distribution of X, therefore we know the mean
and standard deviation of X̄ (see Appendix or look it up):

µx̄ =
1

17
E(X) =

ν

17
=

323

17

σ2
x̄ =

1

n2
2ν =

2 · 323

172

Therefore, the following rv is approximately standard normal:

1
17

X − 323
17√

646
17

=
X − 323√

646

Now we compute the probability that the combined weight of the fish
is over 19 pounds (or 304 ounces):

P (X > 304) = P

(
X − 323√

646
>

304− 323√
646

)
= P (Z > −0.75) =

1

2
+ P (0 < Z < 0.75) = 0.5 + 0.2734 = 0.8734

4. If X1, X2, X3, X4, X5 are iid with standard normal distributions, find c
so that the random variable:

c(X1 + X2)√
X2

3 + X2
4 + X2

5
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has a t distribution.

To build a t−distribution, we need a standard normal distribution, Z,
and a χ2 distribution, Y (see Theorem 8.12). We know that if X1, X2

are standard normal, then

Z = X1 + X2

is also standard normal with standard deviation σ =
√

2 (the MGF
technique). To make Z have unit standard deviation, we should mul-
tiply Z by 1√

2
.

We know that X2
1 + X2

2 + X2
3 has a χ2 distribution with 3 degrees of

freedom. Therefore, the following has a t−distribution:

1√
2
(X1 + X2)√
X2

1+X2
2+X2

3

3

so c =
√

3
2
.

5. Given a random sample of size n from a Gamma distribution with
known parameter α = 2, find the MLE of the parameter β.

(See Exercise 10.61)

With α = 2, the pdf is: f(x) = 1
β2 xe−x/β. Therefore the likelihood

function is:

L(β) =
1

β2n

n∑
i=1

xie
− 1

β

∑n
i=1 xi

Before differentiating to find the max, take the log of both sides:

ln(L(β)) = −2n ln(β) + ln(
∑

xi)−
∑

xi

β

Differentiate and set to zero to find the critical points:

d ln(L(β))

dβ
= −2n

β
+

∑
xi

β2
= 0 ⇒ β =

x

2

To show that this is indeed a maximum, consider that the derivative
can be written as:

d ln(L(β))

dβ
=

2n

β2

(
−β +

x̄

2

)
which changes from positive to negative as β changes from smaller than
x̄/2 to larger.
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6. The claim that the variance of a normal population is 4 will be rejected
if the variance of a random sample of size 9 exceeds 7.7535. What is
the probability that the claim will be rejected (even though the actual
parameter is σ2 = 4)?

We’re looking for the probability that the variance S2 will be greater
than 7.7535. Recall that the rv (n− 1)S2/σ2 is χ2, so we look for:

P

(
8S2

4
> 15.507

)
Where this rv is χ2 with 8 dof. If you look at the χ2 table in the row
with 8 dof, you will see 15.507 for α = 0.05.

This means that the probability is 5% of rejecting the claim.

7. A random sample of size 100 is taken from an infinite population with
the mean µ = 75 and σ2 = 256. Compare the probabilities we get that
X̄ will fall between 67 and 83 using (i) Chebyshev’s Inequality, and (ii)
CLT.

We compute the mean and variance of x̄: µx̄ = µ = 75 and σx̄ = 16√
100

=
1.6. We’ll also standardize the rv:

67 < X̄ < 83 ⇒ −8 < x̄− µ < 8 ⇒ |X̄ − µ|
σ

= 5

For Chebyshev, k = 5 and the probability:

P
(
|X̄ − 75| < 5 · 1.6

)
≥ 1− 1

52
=

24

25
= 0.96

For the normal approximation,

P (67 < X̄ < 83) = P (|Z| < 5) =

2P (0 < Z < 5) = 2 · 0.4999997 = 0.9999994 ≈ 1

8. Given an iid random sample X1, X2, . . . , Xn, we said that the random
variable X̄ has its own distribution- What is its mean and variance?
Is there a relationship between that and the sample mean and sample
variance (biased or unbiased estimators perhaps?)

Similar to our last problem, if µ is the expected value from the identical
distribution, and σ is its standard deviation, then

µx̄ = E(X̄) = µ σ2
x̄ =

1

n2
(σ2 + . . . + σ2) =

1

n
σ2

The sample mean and variance, as random variables, are:

X =
1

n

n∑
i=1

Xi S2 =
1

n− 1

n∑
i=1

(X −X)2

We saw that X and S2 are unbiased estimators of µ, σ (given infinite
populations).
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9. The width of a fence board that is marked 6 inches will actually have
a mean width measurement of µ = 5.5 inches (that is true) with a
standard deviation of 0.24 inches (that is made up). What is the prob-
ability (using the CLT) that the total length of 100 boards placed side
by side (with the gap between negligible) will be between 546 and 554
inches?

To use the CLT, we need to form: (X̄ − µ)/(σ/
√

n). Let Xi be the
width of the ith board. Then:

546 <
100∑
i=1

Xi < 554 ⇒ 5.46 <
1

100

∑
Xi < 5.54 ⇒

|X̄ − µ| < 0.04 ⇒
∣∣∣∣X̄ − µ

0.0204

∣∣∣∣ < 1.96

or, what is P (|Z| < 1.96)? From the table,

P (|Z| < 1.96) = 2P (0 < Z < 0.98) = 2 · 0.3365 ≈ 67.3%

10. In a study of television viewing habits, it is desired to estimate the
number of hours that teenagers spending watching pe week. If it is
reasonable to assume that σ = 3.2 hours, how large a sample is needed
so that it will be possible to assert with 95% confidence that the mean
is off by less than 20 minutes?

(See Exercise 11.29, p 371)

We take σ = 3.2, how large should n be so that it will be possible to
assert with 95% confidence that the sample mean is off by less than
1/3 (where units are in hours).

|X̄ − µ| < 1.96 · 3.2√
n

=
1

3

Solving for n,
18.816 =

√
n ⇒ n ≥ 354

11. Let Y be a random variable with pdf f(y). Let Z = G(Y ). What
should G be in order for Z to be uniform on (0, 1)?

See the notes from Section 7.1 (in the text, see Example 7.8). In class,
we said that G should be F , which is the CDF of Y .

The importance of this:

This is how we use computers to simulate general distribu-
tions given only the uniform distribution. That is, F−1(Z) =
Y means that if I take a random sample from Z (uniform),
and take yi = F−1(xi), then yi comes from the pdf defined
as f .
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Example from class: How would we find n random numbers coming
from an exponential distribution (using a uniform distribution)?

12. Given a random sample of size n from a geometric population, find
formulas for estimating its parameter θ by (a) Method of moments, (b)
MLE (Maximum Likelihood Estimation)

(a) Method of moments:

m′
1 =

1

θ
Easy!

(b) MLE:

L(θ) = θ(1−θ)(x1−1)·θ(1−θ)(x2−1) · · · θ(1−θ)(xn−1) = θn(1−θ)
∑

xi−n

Take the logarithm and differentiate, then find the critical points:

ln(L(θ)) = n ln(θ) +

(
n∑

i=1

xi − n

)
ln(1− θ)

d ln(L(θ))

dθ
=

n

θ
−
∑n

i=1 xi − n

1− θ
= 0∑

xi − n

1− θ
=

n

θ
⇒ θ

n∑
i=1

xi−nθ = n−nθ ⇒ 1

θ
=

1

n

n∑
i=1

xi

which is the same answer as in part (a).

13. If X and Y are two independent rvs having identical gamma distri-
butions, find the joint pdf of the random variables U = X

X+Y
and

V = X + Y .

We will use the transformation method to get the new pdf. First we
invert the given functions, then compute the Jacobian. To do the
inversion, you might use substitution- For example, substitute y = v−x
into the equation for u:

u =
x

x + y
⇒ u =

x

x + v − x
⇒ x = uv

and solve for y in the same way:

y = v − x = v − uv = v(1− u)

We now have x and y in terms of u, v. Compute the Jacobian:[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
=

[
v u
−v 1− u

]
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whose determinant is v (or the absolute value of v).

Now, the original pdf was a joint Gamma pdf:

f(x, y) =
1

(βαΓ(α))2xα−1yα−1e−(1/β)(x+y), x > 0, y > 0

Now convert this into a joint pdf in u, v:

g(u, v) =
1

(βαΓ(α))2 (u(1− u))α−1v2α−1e−(1/β)v

And the restrictions were originally x > 0, y > 0:

u =
x

x + y
⇒ 0 < u < 1 and 0 < v < ∞

The inequality for u was obtained by inspection of the numerator and
denominator- The denominator is always greater than the numerator.

14. The standard error is either σ/
√

n or s/
√

n. What is the length of a
confidence interval (using σ, then using s)?

The CI is x̄± zα/2
σ√
n

or x̄± tα/2
s√
n
. Respectively, the lengths are:

2zα/2
σ√
n

2tα/2
σ√
n

How would n have to change in order to halve a confidence interval?

The size n would have to be increased fourfold, since it is proportional
to 1/

√
n.

15. Find zα/2 if we are to construct an 85% confidence interval (two sided
as is our usual practice):

Using 85, we have 1 − α = 85, or α/2 = 0.075. The area is then
0.5− 0.075 = 0.425. Look that up in the table to find that z is 1.44.

16. Given 8 data values, and∑
xi = 108

∑
x2

i = 1486

Compute the sample mean and sample variance.

The sample mean is simple- 108/8=13.5. For the sample variance,
(could you give this general formula?)

s2 =
8 · 1486− (8 · 13.5)2

8 · 7
=

11888− 11664

8 · 7
= 4
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17. Prove the following, using the MGF technique: If X1, X2 are indepen-
dent rvs, and X1 has a χ2 distribution with dof ν1, and X1 + X2 has
χ2 with dof ν > ν1, then X2 is χ2 with dof ν − ν1.

(See Theorem 8.11) Here’s a nice proof using MGFs:

MX1(t)MX2(t) = MX1+X2(t) ⇒ (1−2t)−
1
2
ν1MX2(t) = (1−2t)−

1
2
ν ⇒

MX2(t) = (1− 2t)−
1
2
(ν−ν1)

Therefore, X2 is χ2 with ν − ν1 degrees of freedom.

18. Consider two random variables X and Y whose joint pdf is given by:
f(x, y) = 1

2
if x > 0, y > 0 and x + y < 2 (zero elsewhere). Find the

pdf of U = Y −X.

(See Exercise 7.34)

We set up the solution to this one in class. The hard part is in figuring
out what region in the plane the new PDF is over.

The pdf was uniform, f(x, y) = 1/2 for x > 0, y > 0 and x + y < 2.
This is a triangle in Quadrant I. With the change of variables,

u1 = x
u2 = y − x

⇒ x = u1

y = u1 + u2
⇒ |J | = 1

Therefore, the new joint pdf is:

f(u1, u2) =
1

2

You should plot the region before integrating- We’re finding the marginal
pdf for y, therefore we need to break the integration into two parts:

• If 0 < u2 < 2, then:

g(u2) =
1

2

∫ 1− 1
2
u2

0

du1 =
1

4
(2− u)

• If −2 < u2 < 0, then:

g(u2) =
1

2

∫ 1− 1
2
u2

−u

du1 =
1

4
(2 + u)
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19. Let X and Y be iid exponential with θ = 1. Let Z = 1
2
(X + Y ). Find

the pdf of Z by the CDF technique.

To find the CDF, we compute the following- which we interpret as an
integral of the joint pdf.

F (Z) = P (Z ≤ z) = P (X + Y ≤ z)

To graph the area in the x− y plane, think of z as a fixed parameter,
and we plot y = −x + z, which in the first quadrant has both x− and
y−intercepts equal to z.

Therefore, the probability is found by integrating the joint PDF over
the appropriate area:

P (X + Y ≤ z) =

∫ z

0

∫ −x+z

0

e−(y+x) dy dx =

∫ z

0

−e−z + e−x dx =

so that

F (z) = −e−zz − e−z + 1 and therefore f(z) = ze−z z > 0

20. Show that the following is an unbiased estimator of σ2 (which is the
shared variance of X1, X2):

S2
p =

(n− 1)S2
1 + (m− 1)S2

2

n + m− 2

(See Exercise 11.9)

Plug-n-Chug.. Note that E(S2
1) = E(S2

2) = σ2, since the variance of
X1, X2 was said to be shared:

E(S2
p) =

n− 1

(n + m− 2)
E(S2

1) +
m− 1

(n + m− 2)
E(S2

2) =
n + m− 2

n + m− 2
σ2 = σ2
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