Quiz 3 SOLUTIONS

- 1. Let f(x, y, z) = kxyz with $x \in \{1, 2\}$, $y \in \{1, 2, 3\}$, and $z \in \{1, 2\}$ (and f is zero elsewhere).
 - (a) Find k so that f is a probability distribution function. SOLUTION: The sum over all input should be 1. Factoring k out,

The full sum is 54, so k = 1/54.

(b) Find P(X = 1, Y + Z = 3):

$$= P(X = 1, Y = 1, Z = 2) + P(X = 1, Y = 2, Z = 1) = \frac{1 \cdot 1 \cdot 2 + 1 \cdot 2 \cdot 1}{54} = \frac{2}{27}$$

(c) If F is the cumulative distribution, what is F(2,1,2)? There are two lines in the chart above corresponding to Y = 1, and X, Z can be in their full range:

$$\frac{1+2+2+4}{54} = \frac{9}{54} = \frac{1}{6}$$

(d) Find the marginal distribution, h(y). Summing across the tables.

$$h(1) = \frac{1+2+2+4}{54} = \frac{1}{6} \qquad h(2) = \frac{2+4+4+8}{54} = \frac{1}{3} \qquad h(3) = \frac{3+6+6+12}{54} = \frac{27}{54} = \frac{1}{2}$$

2. Let the joint distribution function be given by:

$$F(x,y) = 1 - e^{-x} - e^{-y} + e^{-x-y}$$

if x > 0, y > 0 (zero elsewhere).

- (a) Compute P(1 < X < 2, 1 < Y < 2) This is F(2,2) = F(1,2) F(2,1) + F(1,1) $e^{-2} + e^{-4} - 2e^{-3} \approx 0.054$
- (b) Find the joint probability density, f.

$$f = F_{xy}$$
 $F_x = e^{-x} - e^{-x}e^{-y}$ $F_{xy} = e^{-(x+y)}$

And this is valid in Quadrant I (zero elsewhere).

(c) Find the marginal cumulative distribution,

$$H(y) = P(Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{\infty} f(x, t) dx dt = F(\infty, y) = 1 - e^{-y}$$

3. A joint PDF is given below.

$$f(x,y) = xye^{-(x+y)}, \quad x > 0, \quad y > 0$$

Find F(s,t), the cumulative distribution function.

Integration by parts note: We can build a table to compute $\int xe^{-x} dx$

Now,

$$F(s,t) = \int_{-\infty}^{s} \int_{-\infty}^{t} xy e^{-(x+y)} dy dx = \int_{-\infty}^{s} \int_{-\infty}^{t} xe^{-x} y e^{-y} dy dx = \left(\int_{-\infty}^{s} xe^{-x} dx \right) \left(\int_{-\infty}^{t} ye^{-y} dy \right) \left(e^{-s} (s+1) - 1 \right) \left(e^{-t} (t+1) - 1 \right)$$

1