Homework Addendum for 4.1-4.3

1. Show that the intersection of two convex sets is convex.
2. If we define a hyperplane as the set of vectors \mathbf{x} so that $\mathbf{c}^{T} \mathbf{x}-b=0$ for some constant vector \mathbf{c} and scalar b, then show that a hyperplane is convex.
3. Show that the convex hull of a given set of k vectors is convex.
4. Find a convex combination of the vertices of the polygonal region below for the point $(1,2)$. You may do this all in two dimensions.

$$
\begin{aligned}
x_{1}+ & x_{2} \leq 5 \\
3 x_{1}+ & 2 x_{2} \leq 12 \\
x_{1}, & x_{2} \geq 0
\end{aligned}
$$

5. Consider the feasible set:

$$
\begin{aligned}
2 x+ & y \geq 4 \\
x+ & 2 y \geq 6 \\
-x & +2 y \geq 2 \\
x, & y \geq 0
\end{aligned}
$$

(a) Write the feasible set in standard form.
(b) Find a direction of unboundedness, \mathbf{d}.
(c) Write the point corresponding to $(2,4)$ using Theorem 2, page 135 . Be sure to pay attention to the appropriate dimensions!

