
Review Questions, Final Exam

1. General questions:

(a) What is the Fundamental Theorem of Linear Programming?

SOLUTION: We can paraphrase this since it is not given in the text this way, but the main point
is that when an LP has an optimal solution, it has an optimal BFS (which means we only need
to search through the BFS).

(b) What is the main idea behind the Simplex Method? (Think about what it is doing graphically-
How does the algorithm start, how does it proceed?)

SOLUTION: Actually, I included the main idea in the first answer- We begin with a BFS, and
determine if that BFS is optimal. If it is not, then we determine which adjacent BFS should come
into the algorithm next. If we cannot bring any BFS in, then the algorithm terminates.

2. Consider the following LP:

min z = 3x− 4y + 2z

st 2x− 4y ≥ 4

x + z ≥ −5

y + z ≤ 1

x + y + z = 3

with x ≥ 0, y is URS, z ≥ 0.

(a) Write the dual.

SOLUTION: Sorry for using x, y, z for the primal- Maybe use ui for the dual- In that case,

maxw = 4u1 − 5u2 + u3 + 3u4

st 2u1 + u2 + u3 + u4 ≤ 3

−4u1 + u3 + u4 = −4

u2 + u3 + u4 ≤ 2

with u1 ≥ 0, u2 ≥ 0, u3 ≤ 0, and u4 URS.

(b) Going back to the original LP, write it in standard form as a max problem with equality con-
straints, and then write the initial tableau (before big-M or other methods).

SOLUTION: To prepare for the simplex method, we’ll make this a max problem and get rid of
the −5 on the right hand side of a constraint. Further, since y is URS, replace y = y1− y2, where
y1,2 ≥ 0. Finally, add excess or slack variables to turn the inequalities into equality constraints.

min z = 3x− 4y + 2z

st 2x− 4y ≥ 4

x + z ≥ −5

y + z ≤ 1

x + y + z = 3

⇒

max z = −3x + 4(y1 − y2)− 2z

st 2x− 4(y1 − y2)− e1 = 4

−x− z + s1 = 5

(y1 − y2) + z + s2 = 1

x + (y1 − y2) + z = 3

Therefore, the tableau is:

x y1 y2 z e1 s1 s2 rhs

3 −4 4 2 0 0 0 0

2 −4 4 0 −1 0 0 4

−1 0 0 −1 0 1 0 5

0 1 −1 1 0 0 1 1

1 1 −1 1 0 0 0 3
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3. Consider again the “Wyndoor” company example we looked at in class:

min z = 3x1 + 5x2

st x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 ≤ 18

with x1, x2 both non-negative.

(a) SOLUTION:

Define the extra variables s1, s2, s3.

Using the extra variables in order, the constraints become:

x1+ s1 = 4

2x2+ s2 = 12

3x1+ 2x2+ s3 = 18

And from this, it is easy to read off the coefficient matrix A.

(b) Is the following a basic solution? Is it a basic feasible solution?

x1 = 0, x2 = 6, s1 = 4, s2 = 0, s3 = 6

Which variables are BV, and which are NBV?

SOLUTION: The matrix A has rank 3. If the solution has n −m = 5 − 3 = 2 zeros (and it is a
solution), then it is a basic solution: Yes, this is a basic solution. It is also a basic feasible solution
since every entry of the basic solution is non-negative. The variables x2, s1 and s3 are the basic
variables (BV) and the variables x1 and s2 are NBV.

(c) Find the basic feasible solution obtained by taking s1, s3 as the non-basic variables.

In this case, we can row reduce the augmented matrix (remove columns 3 and 5 from the original): 1 0 0 4

0 2 1 12

3 2 0 18

 −→
 1 0 0 4

0 1 0 3

0 0 1 6


In this case, we have the (full) solution:

x1 = 4, x2 = 3, x3 = 0, x4 = 6, x5 = 0

4. Given the current tableau (with variables labeled above the respective columns), answer the questions
below.

x1 x2 s1 s2 rhs

0 −1 0 2 24

0 1/3 1 −1/3 1

1 2/3 0 1/3 4

(a) Is the tableau optimal (and did your answer depend on whether we are maximizing or minimizing)?
For the remaining questions, you may assume we are maximizing.

ANSWER: This tableau is not optimal for either. If we were minimizing, we could still pivot
using s2. If we were maximizing, we could still pivot in x2.

(b) Give the current BFS.

ANSWER: The current BFS is x1 = 4, x2 = 0, s1 = 1 and s2 = 0.
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(c) Directly from the tableau, can I increase x2 from 0 to 1 and remain feasible? Can I increase it to
4?

ANSWER: From the ratio test, x2 can be increased to 3 in the first, and 6 in the second. However,
increasing it to 4 would violate the first constraint. Summary: I can increase x2 from 0 to 1, but
not to 4.

(d) If x2 is increased from 0 to 1, compute the new value of z, x1, s1 (assuming s2 stays zero).

SOLUTION:

z = 25 x1 =
10

3
s1 =

2

3

(e) Write the objective function and all variables in terms of the non-basic (or free) variables, and
then put them in vector form.

SOLUTION: For the current tableau, z = 24 + x2 − 2s2, with

x1 = 4− 2/3x2 − 1/3s2

x2 = x2

s1 = 1− 1/3x2 + 1/3s2

s2 = s2

⇒ x =


4

0

1

0

 +
x2

3


−2

1

−1

0

 +
s2
3


−1

0

1

0


5. Given the following final tableau, find two solutions to the original problem.

x1 x2 x3 s1 s2 rhs

0 0 5 0 1 15

0 2/5 9/5 1 −1/5 3

1 3/5 6/5 0 1/5 3

SOLUTION: We want to interpret this final tableau. Notice that:

z = 15− x3 − s2

which does not depend on x2 (and note that the Row 0 coefficient of x2 = 0). Therefore, x2 could
be pivoted in for another BFS. However, we also know that the current system of equations has the
solution:

x1 = 3− 3/5x2

x2 = x2

x3 = 0

s1 = 3

s2 = 0

Anything along this line is also a solution (as long as x1, x2 ≥ 0).

3. Set up the initial tableau for the big-M method, and state what your first step would be.

max z = 5x1 − x2

st 2x1 + x2 = 6

x1 + x2 ≤ 4

x1 + 2x2 ≤ 5

with x1, x2 ≥ 0.
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SOLUTION: This LP becomes:

max z = 5x1 − x2 −Ma1

st 2x1 + x2 + a1 = 6

x1 + x2 + s1 = 4

x1 + 2x2 + s2 = 5

⇒

x1 x2 a1 s1 s2 rhs

−5 1 M 0 0 0

1 1 1 0 0 6

1 2 0 1 0 4

1 2 0 0 1 5

Our first step is to use row reduction to put a zero under the a1 variable (so that the column for a1 is
the first column of the identity matrix).

6. Suppose we have obtained the tableau below for a maximization problem. State conditions on a1, a2, a3, b, c1, c2
that are required to make the following statements true:

(a) The current solution is optimal, and there are alternative optimal solutions.

SOLUTION: b ≥ 0 is necessary. If c1 = 0 and c2 ≥ 0, we can pivot in x1 for an alternate solution.
If c1 ≥ 0, c2 ≥ 0 and a2 > 0, we can pivot in x5 and obtain an alternate solution. If c2 = 0,
a1 > 0 and c1 ≥ 0, we can pivot in x2 and get an alternate solution.

(b) The current basic solution is not a BFS. SOLUTION: b < 0.

(c) The current basic solution is a degenerate BFS. SOLUTION: b = 0

(d) The current basic solution is feasible, but the LP is unbounded.

SOLUTION: b ≥ 0 makes the current solution feasible. If c2 < 0 and a1 ≤ 0, we can make x2 as
large as desired (unbounded).

(e) The current basic solution is feasible, but the objective function can be improved by replacing x6

with x1 as a basic variable.

SOLUTION: b ≥ 0 makes the current solution feasible. For x6 to replace x1, we need c1 < 0, and
we need Row 3 to win the ratio test for x1. This means that 3/a3 ≤ b/4.

x1 x2 x3 x4 x5 x6 rhs

c1 c2 0 0 0 0 10

4 a1 1 0 a2 0 b

−1 −5 0 1 −1 0 2

a3 −3 0 0 −4 1 3

7. (This is from our Group Work Handout for Chapter 6)

In the textbook’s “Dakota Problem”, we are making desks, tables and chairs, and we want to maximize
profit given constraints on lumber, finishing and carpentry (resp).

For the primal, let x1, x2, x3 be the number of desks, tables and chairs we make (resp), where the
original (max) tableau is as given below:

x1 x2 x3 s1 s2 s3 rhs

−60 −30 −20 0 0 0 0

8 6 1 1 0 0 48

4 2 3
2 0 1 0 20

2 3
2

1
2 0 0 1 8

→

x1 x2 x3 s1 s2 s3 rhs

0 5 0 0 10 10 280

0 −2 0 1 2 −8 24

0 −2 1 0 2 −4 8

1 5
4 0 0 − 1

2
3
2 2
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(a) Write the down vectors/matrices that we typically use in our computations. Namely, c, cB , B,
and B−1.

c =



60

30

20

0

0

0


cB =

 0

20

60

 B =

 1 1 8

0 3
2 4

0 1
2 2

 B−1 =

 1 2 −8

0 2 −4

0 −1/2 3/2



(b) Using our vector notation, if B gives the optimal basis, how do we compute the dual, y =
(cTBB

−1)T (the transpose makes it a column).

(c) Write down the dual (either as an initial tableau or in ”normal form”).

In “normal form”,

min w = 48y1 + 20y2 + 8y3

st 8y1 + 4y2 + 2y3 ≥ 60

6y1 + 2y2 + 3
2y3 ≥ 30

y1 + 3
2y2 + 1

2y3 ≥ 20

y ≥ 0

(d) Using the optimal Row 0 from the primal, write down the solution to the dual:

y = [0, 10, 10]T

(e) In our ”normal form”, we have Ax ≤ b for the primal and ATy ≥ c for the dual.

� The ”slack” for the primal, given x: b−Ax:
SOLUTION: These are s1, s2, s3, which are already solved for: s1

s2

s3

 =

 24

0

0


� The ”slack” for the dual, given y: ATy − c:

SOLUTION: These are e1, e2, e3 for the dual, which we can get from (3):

8(0) + 4(10) + 2(10)− e1 = 60

6(0) + 2(10) + 1.5(10)− e2 = 30

(0) + (1.5)(10) + 0.5(10)− e3 = 20

⇒

 e1

e2

e3

 =

 0

5

0


You might notice there’s a vector just like this in the final Row 0 of the primal!

(f) What is the shadow price for each constraint?

SOLUTION: The shadow prices are the solutions to the dual, 0, 10, 10 for constraints 1, 2, and 3,
respectively.

(g) Write down the inequalit(ies) we need for ∆ if we change the coefficient of x2 from 30 to 30 + ∆,
and we want the current basis to remain optimal.

SOLUTION: Since x2 is a NBV, we can compute this by either: 5−∆ > 0 so ∆ < 5, or by using
the second constraint of the dual:

6(0) + 2(10) + 1.5(10) ≥ 30 + ∆ ⇒ 5 ≥ ∆
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(h) Write down the inequalit(ies) we need for ∆ if we change the coefficient of x3 from 20 to 20 + ∆,
and we want the current basis to remain optimal.

SOLUTION: This is a change to a NBV, so we take:

Old Row 0 : X 5 X X 10 10

+(∆)(Row 2) : X −2∆ X X 2∆ −4∆

0 5− 2∆ 0 0 10 + 2∆ 10− 4∆

⇒ −5 < ∆ <
5

2

(i) How does changing a column of A effect the dual? Use this to see what would happen if we change
the column for x2 (tables) to be [5, 2, 2]T - Is it now worth it to make tables?

SOLUTION: Changing the 2d column of A means changing the 2d constraint for the dual, so
we’ll go ahead and check that, using our current solution to the dual:

5(0) + 2(10) + 2(10) ≥ 30? ⇒ Yes.

Interpretation: The dual is still feasible, so therefore, the current basis for the primal is still
optimal. That means we should NOT bring in x2 (keep x2 at 0).

(j) How does creating a new column of A effect the dual? Use this to see if it makes sense to
manufacture footstools, where we sell them for $15 each, and the resources are [1, 1, 1]T .

SOLUTION: Adding a new column (or activity) in the primal corresponds to adding a new
constraint to the dual:

1(0) + 1(10) + 1(10) ≥ 15? ⇒ Yes.

Therefore, the dual is still feasible, and the current basis for the primal is still optimal. We should
not make any footstools at this price (we see that we would need to price them at at least $20
each).

8. Consider the LP and the optimal tableau with missing Row 0 and missing optimal RHS (assume
big-M).

max z = 3x1 + x2

s.t. 2x1 + x2 ≤ 4

3x1 + 2x2 ≥ 6

4x1 + 2x2 = 7

x1, x2 ≥ 0

x1 x2 s1 e2 a2 a3 rhs

0 0 1 0 0 −1/2

0 1 0 −2 2 −3/2

1 0 0 1 −1 1

Find Row 0 and the RHS for the optimal tableau (without performing row reductions!)

SOLUTION: Row 0 coefficients are given by

−cT + cTBB
−1A where cT = [3, 1, 0, 0,−M,−M ] and cTB = [0, 1, 3]

The columns in the tableau are already the columns for B−1A, so we can use them. Here are the Row
zero coefficients:

� For e2: [0, 1, 3][0,−2, 1]T = 1

� For a2: M + [0, 1, 3][0, 2,−1] = −1 + M

� For a3: M + [0, 1, 3][−1/2,−3/2, 1]T = 3/2 + M

� Optimal z is [0, 1, 3][1/2, 3/2, 1]T = 9/2

� We have zeros for x1, x2, s1.
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Therefore, the optimal tableau is:

x1 x2 s1 e2 a2 a3 rhs

0 0 0 1 −1 + M 3/2 + M 9/2

0 0 1 0 0 − 1
2

1
2

0 1 0 −2 2 − 3
2

3
2

1 0 0 1 −1 1 1

9. Give an argument why, if the primal is unbounded, then the dual must be infeasible.

SOLUTION:

Suppose the dual was feasible. Then there exists a y that satisfies the constraints for the dual. But in
that case, for every x in the primal,

cTx ≤ bTy

But we said that the primal was unbounded, so that cTx → ∞. This is a contradiction- Thus, the
dual must be infeasible.

10. Consider the following LP and its optimal tableau, shown.

max z = 4x1 + x2

st x1 + 2x2 = 6

x1 − x2 ≥ 3

2x1 + x2 ≤ 10

x1, x2 ≥ 0

⇒

x1 x2 e1 s1 a1 a2 rhs

0 0 0 7/3 M − 2/3 M 58/3

0 1 0 −1/3 2/3 0 2/3

1 0 0 2/3 −1/3 0 14/3

0 0 1 1 −1 −1 1

(a) Find the dual of this LP and its optimal solution.

SOLUTION:
minw = 6y1 + 3y2 + 10y3

st y1 + y2 + 2y3 ≥ 4

2y1 − y2 + y3 ≥ 1

with y1 URS, y2 ≤ 0, and y3 ≥ 0. The optimal solution to the dual is y = [−2/3, 0, 7/3].

(b) Find the range of values of b3 = 10 for which the current basis remains optimal.

SOLUTION: To find the range of values, we have

B−1b + ∆B−1
3 =

 2/3

14/3

1

 + ∆

 −1/3

2/3

1


The tricky bit here may be to determine what the third column of B−1 is from the optimal
tableau. To determine this, figure out which variables corresponded to the three columns of the
identity (from the original tableau). In this case, the column with s1 would be it, since the only
constraint that requires a slack variable is the third one.

11. Televco produces TV tubes at three plants, shown below. We have three customers, and the profits
for each depend on the plant, as shown on the right.

Customer 1 2 3

Demand 80 90 100

Plant 1 2 3

Number of Tubes 50 100 50

Cust 1 Cust 2 Cust 3

Plant 1 75 60 69

Plant 2 79 73 68

Plant 3 85 76 70
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� Formulate a balanced transportation problem that can be used to maximize profits.

� Use the NW corner method to find a BFS to the problem.

� Find an optimal solution.

SOLUTION:

Important note: We set up the transportation to minimize the cost of the transportation rather
than to maximize. The NW corner rule doesn’t take costs or profits into account, so it wouldn’t change,
but the value of cij − (ui + vj) does change. In the max problem, these should all be negative rather
than positive (it is probably easier to do this rather than negating all the profits).

After using the NW corner rule and apply MODI (modified distribution), or the “u-v” method, we get
the following, where each row is a plant (last row is a dummy), and each column is a customer.

v1 = 75 v2 = 69 v3 = 69

u1 = 0

75

20

60

(−9)

69

30 50

u2 = 4

79

10

73

90

68

(−5) 100

u3 = 10

85

50

76

(−3)

70

(−9) 50

u4 = 1

0

(−76)

0

(−70)

0

70 70

Demand 80 90 100

By incorporating any of the other variables in as BVs, we would decrease our profit (since the values
in parentheses are all negative), so this represents a BFS giving the maximum profit.

12. Five workers are available to perform four jobs. The time it takes each worker to perform each job is
given below. The goal is to assign workers to jobs so as to minimize the total time required. Use the
Hungarian method to solve.

Job 1 2 3 4

Worker 1 10 15 10 15

2 12 8 20 16

3 12 9 12 18

4 6 12 15 18

5 16 12 8 12

SOLUTION: You should find one optimal way of performing the assignments is:

Worker 1 does job 3. Worker 2 does job 2. Worker 3 does nothing. Worker 4 does job 1. Worker 5
does job 4.

3. A company must meet the demands shown below for a product. Demand may be backlogged at a cost
of $5 per unit per month. All demand must be met at the end of March. Thus, if 1 unit of January
demand is met during March, a cost of $5× 2=$10 is incurred. Monthly production capacity and unit
production cost during each month are shown below. A holding cost of $20 per unit is assessed on the
inventory at the end of each month.
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Month Demand Prod Cap Unit Prod Cost

Jan 30 35 400

Feb 30 30 420

Mar 20 35 410

Formulate a balanced transportation problem that can be used to determine how to minimize the cost
(including backlogging, holding and production costs).

HINT: To set this up, think of Jan, Feb and Mar as having supplies of 35, 30and35, and demands of
30, 30, 20 (we’ll need a dummy to balance. For the costs, January can supply January at a cost of $400
per unit, January can supply Feb at a cost of $420 per unit, and it can supply March at a cost of $440
per unit.

SOLUTION: Here is the optimal solution:

Jan Feb Mar Dummy

Jan

400

30

420

5

440 0

35

Feb

425 420

10

440 0

20 30

Mar

420 415

15

410

20

0

35

Demand 30 30 20 20

13. Solve the following LP (HINT: It can be put into a 2× 2 transportation problem).

min z = 2x1 + 3x2 + 4x3 + 3x4

s.t. x1 + x2 ≤ 4

x3 + x4 ≤ 5

x1 + x3 ≥ 3

x2 + x4 ≥ 6

(All variables ≥ 0).

SOLUTION (showing optimal using u− v):

v1 = 2 v2 = 3 Supply

u1 = 0

2

3

3

1 4

u2 = 2

4

(0)

3

5 5

Demand 3 6 9

14. Find the optimal solution to the balanced transportation problem below:

SOLUTION: (also with u− v):
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v1 = 4 v2 = 2 v3 = −2

u1 = 0

4

10

2

5

4

(0) 15

u2 = 6

12

(2)

8

5

4

10 15

10 10 10

15. Consider the optimal tableau for the PowerCo problem.

(a) Find the range of values of c24 for which the current basis is optimal.

v1 = 6 v2 = 6 v3 = 10 v4 = 2

u1 = 0

8

(6)

6

10

10

25

9

(7) 35

u2 = 3

9

45

12

(3)

13

5

7 + ∆

(2 + ∆) 50

u3 = 3

14

(6)

9

10

16

(3)

5

30 40

45 20 30 30

We only need 2 + ∆ ≥ 0, or ∆ ≥ −2 (so that c24 ≥ 5).

(b) Find the range of values of c23 for which the current basis is optimal.

v1 = 6 − ∆ v2 = 6 v3 = 10 v4 = 2

u1 = 0

8

(2 + ∆)

6

10

10

25

9

(7) 35

u2 = 3 + ∆

9

45

12

(3 − ∆)

13 + ∆

5

7

(5 − ∆) 50

u3 = 3

14

(6 + ∆)

9

10

16

(3)

5

30 40

45 20 30 30

Putting the inequalities together, −2 ≤ ∆ ≤ 3, or 11 < c23 < 16.

16. Write the shortest path problem as (i) a
transhipment problem, and (ii) a linear pro-
gram. For specificity, use the PowerCo net-
work below (Figure 2, p 414). (Hints: For
transhipment, we have one supply, one de-
mand, and a bunch of warehouses. For the
LP, you could write it from the tranship-
ment problem.). Finally, find the shortest
path from Plant 1 to City 1 using Dijkstra’s
algorithm.
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2 3 4 5

1

4 3 M M M

1

2

0 M 3 2 M

s

3

M 0 M 3 M

s

4

M M 0 M 2

s

5

M M M 0 M

s

s s s s 1 1+4s

For the LP, we can also use the MCNFP framework (node constraints are b(i) = Out− In)

minw = 4x12 + 3x13 + 3x24 + 2x25 + 3x35 + 2x46 + 2x56

st x12 + x13 = 1

−x12 + x24 + x25 = 0

−x13 + x35 = 0

−x24 + x46 = 0

−x25 − x35 + x56 = 0

−x46 − x56 = −1

with xij ≥ 0.

For Dijkstra’s algorithm, we have:

1 2 3 4 5 6

1 01 41 31 ∞1 ∞1 ∞1

3 41 31 ∞1 63 ∞1

2 41 72 62,3 ∞1

5 72 62,3 ∞1

4 72 85

6 85

This tells us that the shortest length to node 6 is 8 units, and we get that by taking either 1 → 2 →
5→ 6, or 1→ 3→ 5→ 6.

17. Given the figure below (Fig 23 from the text),
first write the maximum flow problem as a lin-
ear program. (Hint: Think about the constraints
on the flow for each edge, then for each ver-
tex). Solve the max-flow problem using Ford-
Fulkerson. Be sure to write out the residual
graphs. Finally, find a cut giving the minimum
capacity to show that your solution is correct.

For the linear program, let v =value of flow, and make b(so) = v, b(si) = −v (this is setting up
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MCNFP). Then we have the following LP

max z = v

st xs0,1 + xs0,2 = v Node so

−xso,1 − x21 + x13 + x14 = 0 Node 1

−xso,2 + x21 + x24 = 0 Node 2

−x13 − x43 + x3,si = 0 Node 3

−x14 − x24 + x43 + x4,si = 0 Node 4

−x4,si − x6,si = −v Node si

xso,1 ≤ 4 xs0,2 ≤ 6

x13 ≤ 6 x14 ≤ 4

x21 ≤ 4 x24 ≤ 4

x3,si ≤ 6

x43 ≤ 1 x4,si ≤ 2

(And all xij ≥ 0).

There are multiple ways to get the max flow of 8. Here are two of them. The residual graph for the
first is below that (and the cut can be obtained by A = {s0, 1, 2, 3, 4}, B = {si}

18. Continuing with Figure 23 from the previous question, with the maximum flow, if the cut is:

A = {so, 2, 3} , B = {1, 4, si}

then what is the net flow across the cut? What is the capacity of the cut?

SOLUTION: The net flow may be different depending on your final flow pattern. The values below
will be from the first flow in the answer. List each edge as moving from A to B, or B to A, or neither.
Might as well list the flow for each and capacity for each as well:

A→ B

Edge fe ce

(s, 1) 4 4

(2, 1) 2 4

(2, 4) 2 4

(3, t) 6 6

B → A

Edge fe ce

(4, 3) 0 1

(1, 3) 6 6

Neither

Edge fe ce

(s, 2) − −
(1, 4) − −
(4, t) − −

For the net flow, we sum fe from A to B, subtract the flow going the other direction: 14− 6 = 8, and
the capacity of the cut:

4 + 4 + 4 + 6 = 18
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