Change in HW for 6.3

Please write up the solutions to $6.3, \# 6$ to turn in. You should be able to show $\# 9$, but not to turn in. Additionally, write up the solutions to the following:
6.3.10 Suppose we have the following LP:

$$
\begin{array}{lrl}
\max z=3 x & +2 y \\
\text { st } & x \quad+y \leq 4 \\
& 2 x \quad+y \leq 6
\end{array}
$$

with $x, y \geq 0$. Here is the initial and final tableaux:

$$
\begin{array}{rrrr|l}
x & y & s_{1} & s_{2} & \\
-3 & -2 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 4 \\
2 & 1 & 0 & 1 & 6
\end{array} \quad \begin{array}{rrrr|r}
x & y & s_{1} & s_{2} & \\
0 & 0 & 1 & 1 & 10 \\
\hline 0 & 1 & 2 & -1 & 2 \\
1 & 0 & -1 & 1 & 2
\end{array}
$$

As a reminder, we said in class that the final tableau could be computed as:

$-\mathbf{c}^{T}+\mathbf{c}_{B}^{T} B^{-1} A$	$\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}$
$B^{-1} A$	$B^{-1} \mathbf{b}$

(a) Something is wrong with the following computation- Find out what it is and give the correct solution:

The optimal Row 0 can be computed directly as:

$$
-[3,2,0,0]-[3,2]\left[\begin{array}{rrrr}
0 & 1 & 2 & -1 \\
1 & 0 & -1 & 1
\end{array}\right]=[-1,1,4,-1]
$$

(b) Once we've corrected the previous problem, add Δ to the coefficient 3 in Row 0 , and show that the new Row 0 is:

$$
\left[\begin{array}{cccc}
{[0} & 0 & 1-\Delta & 1+\Delta]
\end{array}\right.
$$

and the new value of z is $10+2 \Delta$. Also, for what values of Δ will our current basis (of basic variables) remain optimal?
(c) If we change the RHS of the second coefficient from 6 to $6+\Delta$, find the new final tableau. In particular, what is the shadow price for the second constraint?
(d) Suppose we add a new column so that the equations become:

$$
\begin{array}{lrrr}
\max z & =3 x & +2 y+w \\
\text { st } & x+y+2 w & \leq 4 \\
& 2 x+y \quad+w & \leq 6
\end{array}
$$

Will the basis $\left\{x_{2}, x_{1}\right\}$ remain optimal?

