The Simplex Method

- Standard form (max):

$$
\begin{aligned}
z-c^{T} \mathrm{x} & =0 \\
A \mathrm{x} & =\mathrm{b} \\
\mathrm{x} \geq 0, & \mathrm{~b} \geq 0
\end{aligned}
$$

The Simplex Method

- Standard form (max):

$$
\begin{aligned}
z-c^{T} \mathrm{x} & =0 \\
A \mathrm{x} & =\mathrm{b} \\
\mathrm{x} \geq 0, & \mathrm{~b} \geq 0
\end{aligned}
$$

- Build initial tableau.

$$
\begin{array}{c|c|c}
1 & -\mathrm{c}^{T} & 0 \\
\hline 0 & A & \mathrm{~b}
\end{array}
$$

The Simplex Method

- Standard form (max):

$$
\begin{aligned}
z-c^{T} \mathrm{x} & =0 \\
A \mathrm{x} & =\mathrm{b} \\
\mathrm{x} \geq 0, & \mathrm{~b} \geq 0
\end{aligned}
$$

- Build initial tableau.

$$
\begin{array}{c|c|c}
1 & -\mathrm{c}^{T} & 0 \\
\hline 0 & A & \mathrm{~b}
\end{array}
$$

- Find an initial BFS.

The Simplex Method

- Standard form (max):

$$
\begin{aligned}
z-c^{T} x & =0 \\
A x & =b \\
x \geq 0, & b \geq 0
\end{aligned}
$$

- Build initial tableau.

$$
\begin{array}{c|c|c}
1 & -c^{T} & 0 \\
\hline 0 & A & \mathrm{~b}
\end{array}
$$

- Find an initial BFS.
- Is the BFS optimal?

The Simplex Method

- Standard form (max):

$$
\begin{aligned}
z-c^{T} \mathrm{x} & =0 \\
A \mathrm{x} & =\mathrm{b} \\
\mathrm{x} \geq 0, & \mathrm{~b} \geq 0
\end{aligned}
$$

- Build initial tableau.

$$
\begin{array}{c|c|c}
1 & -\mathrm{c}^{T} & 0 \\
\hline 0 & A & \mathrm{~b}
\end{array}
$$

- Find an initial BFS.
- Is the BFS optimal?

1. Yes- We're done.

The Simplex Method

- Standard form (max):

$$
\begin{aligned}
z-c^{T} x & =0 \\
A x & =b \\
x \geq 0, & b \geq 0
\end{aligned}
$$

- Build initial tableau.

$$
\begin{array}{c|c|c}
1 & -\mathrm{c}^{T} & 0 \\
\hline 0 & A & \mathrm{~b}
\end{array}
$$

- Find an initial BFS.
- Is the BFS optimal?

1. Yes- We're done.
2. No- Find a (better) adjacent BFS.

The Simplex Method

- Standard form (max):

$$
\begin{aligned}
z-c^{T} x & =0 \\
A x & =b \\
x \geq 0, & b \geq 0
\end{aligned}
$$

- Build initial tableau.

$$
\begin{array}{c|c|c}
1 & -\mathrm{c}^{T} & 0 \\
\hline 0 & A & \mathrm{~b}
\end{array}
$$

- Find an initial BFS.
- Is the BFS optimal?

1. Yes- We're done.
2. No- Find a (better) adjacent BFS.

- Repeat.

Example from Wednesday

LP in standard form:

$$
\begin{array}{llllc}
z & -6 x_{1}- & 5 x_{2}- & 0 s_{1}- & 0 s_{2}=0 \\
& x_{1}+ & x_{2}+ & s_{1} & =5 \\
& 3 x_{1}+ & 2 x_{2}+ & & s_{2}=12
\end{array}
$$

Example from Wednesday

LP in standard form:

$$
\begin{array}{llllc}
z & -6 x_{1}- & 5 x_{2}- & 0 s_{1}- & 0 s_{2}=0 \\
& x_{1}+ & x_{2}+ & s_{1} & =5 \\
& 3 x_{1}+ & 2 x_{2}+ & & s_{2}=12
\end{array}
$$

Convert to the tableau (left-most column is optional)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	-6	-5	0	0	0
0	1	1	1	0	5
0	3	2	0	1	12

Example from Wednesday

LP in standard form:

$$
\begin{array}{lllll}
z & -6 x_{1}- & 5 x_{2}- & 0 s_{1}- & 0 s_{2}=0 \\
& x_{1}+ & x_{2}+ & s_{1} & =5 \\
& 3 x_{1}+ & 2 x_{2}+ & & s_{2}=12
\end{array}
$$

Convert to the tableau (left-most column is optional)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	-6	-5	0	0	0
0	1	1	1	0	5
0	3	2	0	1	12

Step 1: Initial BFS-

Example from Wednesday

LP in standard form:

$$
\begin{array}{lllll}
z & -6 x_{1}- & 5 x_{2}- & 0 s_{1}- & 0 s_{2}=0 \\
& x_{1}+ & x_{2}+ & s_{1} & =5 \\
& 3 x_{1}+ & 2 x_{2}+ & & s_{2}=12
\end{array}
$$

Convert to the tableau (left-most column is optional)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	-6	-5	0	0	0
0	1	1	1	0	5
0	3	2	0	1	12

Step 1: Initial BFS- If we have all of the columns of the identity matrix, those variables are set to BV, all others to NBV.

Example from Wednesday

LP in standard form:

$$
\begin{array}{llllc}
z & -6 x_{1}- & 5 x_{2}- & 0 s_{1}- & 0 s_{2}=0 \\
& x_{1}+ & x_{2}+ & s_{1} & =5 \\
& 3 x_{1}+ & 2 x_{2}+ & & s_{2}=12
\end{array}
$$

Convert to the tableau (left-most column is optional)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	-6	-5	0	0	0
0	1	1	1	0	5
0	3	2	0	1	12

Step 1: Initial BFS- If we have all of the columns of the identity matrix, those variables are set to BV, all others to NBV. Initial BFS

$$
x_{1}=0, x_{2}=0, s_{1}=5, s_{2}=12 \quad z=0
$$

Continuing

Which variable should come in to give a better z ?

Continuing

Which variable should come in to give a better z ?
From Row 0, most negative var: x_{1}.

Continuing

Which variable should come in to give a better z ?
From Row 0 , most negative var: x_{1}.
Should we replace s_{1} or s_{2} (we want to make x_{1} as large as possible for the max)

Continuing

Which variable should come in to give a better z ?
From Row 0 , most negative var: x_{1}.
Should we replace s_{1} or s_{2} (we want to make x_{1} as large as possible for the max)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs		
1	-6	-5	0	0	0		
0	1	1	1	0	5		
0	3	2	0	1	12	$\quad \Rightarrow$	
:---							
s_{1}	$=5-x_{1},$						
:---							
s_{2}	$=12-3 x_{1}$						

Continuing

Which variable should come in to give a better z ?
From Row 0 , most negative var: x_{1}.
Should we replace s_{1} or s_{2} (we want to make x_{1} as large as possible for the max)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs			
1	-6	-5	0	0	0			
0	1	1	1	0	5			
0	3	2	0	1	12	$\quad \Rightarrow$	$s_{1}=5-x_{1}$	$x_{1} \leq 5$
:---	:---							
$s_{2}=12-3 x_{1}$	$x_{1} \leq 12 / 3=4$							

We can make x_{1} as large as 4 (larger makes s_{1} negative).

Continuing

Which variable should come in to give a better z ?
From Row 0, most negative var: x_{1}.
Should we replace s_{1} or s_{2} (we want to make x_{1} as large as possible for the max)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs			
1	-6	-5	0	0	0			
0	1	1	1	0	5			
0	3	2	0	1	12	$\quad \Rightarrow$	$s_{1}=5-x_{1}$	$x_{1} \leq 5$
:---	:---							
$s_{2}=12-3 x_{1}$	$x_{1} \leq 12 / 3=4$							

We can make x_{1} as large as 4 (larger makes s_{1} negative). That means s_{2} is set to zero (and becomes the NBV).

Continuing

Which variable should come in to give a better z ?
From Row 0, most negative var: x_{1}.
Should we replace s_{1} or s_{2} (we want to make x_{1} as large as possible for the max)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs			
1	-6	-5	0	0	0			
0	1	1	1	0	5			
0	3	2	0	1	12	$\quad \Rightarrow$	$s_{1}=5-x_{1}$	$x_{1} \leq 5$
:---	:---							
$s_{2}=12-3 x_{1}$	$x_{1} \leq 12 / 3=4$							

We can make x_{1} as large as 4 (larger makes s_{1} negative). That means s_{2} is set to zero (and becomes the NBV). Pivot in the first column, second row

After pivoting (note that Row 0 is also computed)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	0	-1	0	2	24
0	0	$1 / 3$	1	$-1 / 3$	1
0	1	$2 / 3$	0	$1 / 3$	4

Current BFS: $x_{1}=4, x_{2}=0, s_{1}=1, s_{2}=0$. Optimal?

After pivoting (note that Row 0 is also computed)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	0	-1	0	2	24
0	0	$1 / 3$	1	$-1 / 3$	1
0	1	$2 / 3$	0	$1 / 3$	4

Current BFS: $x_{1}=4, x_{2}=0, s_{1}=1, s_{2}=0$. Optimal? No.

After pivoting (note that Row 0 is also computed)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	0	-1	0	2	24
0	0	$1 / 3$	1	$-1 / 3$	1
0	1	$2 / 3$	0	$1 / 3$	4

Current BFS: $x_{1}=4, x_{2}=0, s_{1}=1, s_{2}=0$. Optimal? No. Bring x_{2} in.

After pivoting (note that Row 0 is also computed)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	0	-1	0	2	24
0	0	$1 / 3$	1	$-1 / 3$	1
0	1	$2 / 3$	0	$1 / 3$	4

Current BFS: $x_{1}=4, x_{2}=0, s_{1}=1, s_{2}=0$. Optimal? No. Bring x_{2} in. From our list of $B V_{s}$:

After pivoting (note that Row 0 is also computed)

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	0	-1	0	2	24
0	0	$1 / 3$	1	$-1 / 3$	1
0	1	$2 / 3$	0	$1 / 3$	4

Current BFS: $x_{1}=4, x_{2}=0, s_{1}=1, s_{2}=0$. Optimal? No. Bring x_{2} in. From our list of $B V_{s}$:

$$
\begin{array}{lll}
x_{1}=4-\frac{2}{3} x_{2} & \Rightarrow & x_{2} \leq \frac{4}{2 / 3}=6 \\
s_{1}=1-\frac{1}{3} x_{2} & \Rightarrow & x_{2} \leq \frac{1}{1 / 3}=3
\end{array}
$$

Note where these values come from: "RHS/Col Entry". Choose the Row with the smaller value, and that gives the pivot row.

Pivot

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs
1	0	0	3	1	27
0	0	1	3	-1	3
0	1	0	-2	1	2

This is the optimal tableau. The optimal solution is $x_{1}=2, x_{2}=3$ with $z=27$.

The Simplex Method

1. Build initial tableau.

1	$-c^{T}$	0
0	A	b

2. Initial BFS from cols of identity

The Simplex Method

1. Build initial tableau.

1	$-\mathrm{c}^{T}$	0
0	A	b

2. Initial BFS from cols of identity
3. Look at Row 0 for neg coeffs:

The Simplex Method

1. Build initial tableau.

1	$-\mathrm{c}^{T}$	0
0	A	b

2. Initial BFS from cols of identity
3. Look at Row 0 for neg coeffs:
3.1 Choose the column most negative coef.

The Simplex Method

1. Build initial tableau.

1	$-\mathrm{c}^{T}$	0
0	A	b

2. Initial BFS from cols of identity
3. Look at Row 0 for neg coeffs:
3.1 Choose the column most negative coef.
3.2 Perform a "ratio test" by taking "RHS/Lead Coeff".

The Simplex Method

1. Build initial tableau.

1	$-\mathrm{c}^{T}$	0
0	A	b

2. Initial BFS from cols of identity
3. Look at Row 0 for neg coeffs:
3.1 Choose the column most negative coef.
3.2 Perform a "ratio test" by taking "RHS/Lead Coeff". Exceptions: Ignore zeros and neg coeffs.

The Simplex Method

1. Build initial tableau.

1	$-\mathrm{c}^{T}$	0
0	A	b

2. Initial BFS from cols of identity
3. Look at Row 0 for neg coeffs:
3.1 Choose the column most negative coef.
3.2 Perform a "ratio test" by taking "RHS/Lead Coeff". Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.

The Simplex Method

1. Build initial tableau.

1	$-\mathrm{c}^{T}$	0
0	A	b

2. Initial BFS from cols of identity
3. Look at Row 0 for neg coeffs:
3.1 Choose the column most negative coef.
3.2 Perform a "ratio test" by taking "RHS/Lead Coeff". Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.
3.3 Pivot using the column/row we found.

The Simplex Method

1. Build initial tableau.

1	$-\mathrm{c}^{T}$	0
0	A	b

2. Initial BFS from cols of identity
3. Look at Row 0 for neg coeffs:
3.1 Choose the column most negative coef.
3.2 Perform a "ratio test" by taking "RHS/Lead Coeff". Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.
3.3 Pivot using the column/row we found.
4. If there are no more negative coefficients in Row 0 , we're done.
(Other stopping criteria later)

Example 2

$$
\begin{aligned}
& \min 2 x_{1}+x_{2}-4 x_{3} \\
& \text { st } 3 x_{1}-x_{2}+2 x_{3} \leq 25 \\
& -x_{1}-x_{2}+2 x_{3} \leq 20 \\
& -x_{1}-x_{2}+x_{3} \leq 5
\end{aligned}
$$

with all variables non-negative.

- Change the min to a max:

Example 2

$$
\begin{aligned}
& \min 2 x_{1}+x_{2}-4 x_{3} \\
& \text { st } 3 x_{1}-x_{2}+2 x_{3} \leq 25 \\
& -x_{1}-x_{2}+2 x_{3} \leq 20 \\
& -x_{1}-x_{2}+x_{3} \leq 5
\end{aligned}
$$

with all variables non-negative.

- Change the min to a max: $\max z=-2 x_{1}-x_{2}+4 x_{3}$
- Now construct the tableau and proceed as usual. Be sure to change back to a min at the end.

$$
\begin{array}{rll}
\max z=-2 x_{1}-x_{2}+4 x_{3} & \\
\text { st } & 3 x_{1}-x_{2}+2 x_{3} & \leq 25 \\
& -x_{1}-x_{2}+2 x_{3} & \leq 20 \\
& -x_{1}-x_{2}+x_{3} & \leq 5
\end{array}
$$

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	$r h s$
1	2	1	-4	0	0	0	0
0	3	-1	2	1	0	0	25
0	-1	-1	2	0	1	0	20
0	-1	-1	1	0	0	1	5

Initial tableau is using s_{1}, s_{2}, s_{3} as BV. From Row 0, next is x_{3}. Perform the ratio test to find the pivot row:

$$
\begin{array}{rll}
\max z=-2 x_{1}-x_{2}+4 x_{3} & \\
\text { st } & 3 x_{1}-x_{2}+2 x_{3} & \leq 25 \\
& -x_{1}-x_{2}+2 x_{3} & \leq 20 \\
& -x_{1}-x_{2}+x_{3} & \leq 5
\end{array}
$$

$$
\begin{array}{r|rrrrrr|r}
z & x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} & r h s \\
1 & 2 & 1 & -4 & 0 & 0 & 0 & 0 \\
\hline 0 & 3 & -1 & 2 & 1 & 0 & 0 & 25 \\
0 & -1 & -1 & 2 & 0 & 1 & 0 & 20 \\
0 & -1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

Initial tableau is using s_{1}, s_{2}, s_{3} as BV. From Row 0, next is x_{3}. Perform the ratio test to find the pivot row:

$$
25 / 2, \quad 20 / 2, \quad 5 / 1 \quad \Rightarrow \quad \text { Row } 3
$$

$$
\begin{array}{rrrrrr|r}
-2 & -3 & 0 & 0 & 0 & 4 & 20 \\
\hline 5 & 1 & 0 & 1 & 0 & -2 & 15 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
-1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

$$
\begin{array}{rrrrrr|r}
-2 & -3 & 0 & 0 & 0 & 4 & 20 \\
\hline 5 & 1 & 0 & 1 & 0 & -2 & 15 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
-1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

Now bring in x_{2},

$$
\begin{array}{rrrrrr|r}
-2 & -3 & 0 & 0 & 0 & 4 & 20 \\
\hline 5 & 1 & 0 & 1 & 0 & -2 & 15 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
-1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

Now bring in x_{2}, and perform the ratio test to find pivot row.

$$
\begin{array}{rrrrrr|r}
-2 & -3 & 0 & 0 & 0 & 4 & 20 \\
\hline 5 & 1 & 0 & 1 & 0 & -2 & 15 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
-1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

Now bring in x_{2}, and perform the ratio test to find pivot row.

$$
15 / 1,10 / 1
$$

Why do we ignore the third row?

$$
\begin{array}{rrrrrr|r}
-2 & -3 & 0 & 0 & 0 & 4 & 20 \\
\hline 5 & 1 & 0 & 1 & 0 & -2 & 15 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
-1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

Now bring in x_{2}, and perform the ratio test to find pivot row.

$$
15 / 1,10 / 1
$$

Why do we ignore the third row?
It says $x_{3}=5+x_{2}$,

$$
\begin{array}{rrrrrr|r}
-2 & -3 & 0 & 0 & 0 & 4 & 20 \\
\hline 5 & 1 & 0 & 1 & 0 & -2 & 15 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
-1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

Now bring in x_{2}, and perform the ratio test to find pivot row.

$$
15 / 1,10 / 1
$$

Why do we ignore the third row?
It says $x_{3}=5+x_{2}$,
No restriction on how large x_{2} can be.

$$
\begin{array}{rrrrrr|r}
-2 & -3 & 0 & 0 & 0 & 4 & 20 \\
\hline 5 & 1 & 0 & 1 & 0 & -2 & 15 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
-1 & -1 & 1 & 0 & 0 & 1 & 5
\end{array}
$$

Now bring in x_{2}, and perform the ratio test to find pivot row.

$$
15 / 1,10 / 1
$$

Why do we ignore the third row?
It says $x_{3}=5+x_{2}$, No restriction on how large x_{2} can be.

Summary: New pivot is $(2,2)$ position.

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}.

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

$$
s_{1}=5+0 s_{3}
$$

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

$$
\begin{aligned}
& s_{1}=5+0 s_{3} \\
& x_{2}=10+2 s_{3}
\end{aligned}
$$

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

$$
\begin{aligned}
& s_{1}=5+0 s_{3} \\
& x_{2}=10+2 s_{3} \\
& x_{3}=15+s_{3}
\end{aligned}
$$

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

$$
\begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Conclusion?

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

$$
\begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Conclusion? The LP is unbounded

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

$$
\begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Conclusion? The LP is unbounded
s_{3} can be increased without bound, AND that causes z to be unbounded.

After Row Reduction

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array}
$$

Bring in s_{3}. Ratio test?

$$
\begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Conclusion? The LP is unbounded
s_{3} can be increased without bound, AND that causes z to be unbounded.
Direction of unboundedness?

$$
x=\left[\begin{array}{c}
0 \\
10 \\
15 \\
5
\end{array}\right]+s_{3}\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \quad s_{1}=5+0 s_{3}
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
& s_{1}=5+0 s_{3} \\
& x_{2}=10+2 s_{3}
\end{aligned}
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
& s_{1}=5+0 s_{3} \\
& x_{2}=10+2 s_{3} \\
& x_{3}=15+s_{3}
\end{aligned}
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Direction of unboundedness?

$$
x_{1}=0
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Direction of unboundedness?

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=10+2 s_{3}
\end{aligned}
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Direction of unboundedness?

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=10+2 s_{3} \\
& x_{3}=15+s_{3}
\end{aligned}
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Direction of unboundedness?

$$
\begin{aligned}
x_{1} & =0 \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
s_{1} & =5
\end{aligned}
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Direction of unboundedness?

$$
\begin{aligned}
x_{1} & =0 \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
s_{1} & =5 \\
s_{2} & =0
\end{aligned}
$$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Direction of unboundedness?

$$
\begin{array}{ll}
x_{1} & =0 \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
s_{1} & =5 \\
s_{2} & =0 \\
s_{3} & =0+s_{3}
\end{array} \quad \rightarrow x=\left[\begin{array}{c}
0 \\
10 \\
15 \\
5 \\
0 \\
0
\end{array}\right]+s_{3}\left[\begin{array}{l}
0 \\
2 \\
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

so $d=(0,2,1,0,0,1)^{T}$

Direction of Unboundedness

$$
\begin{array}{rrrrrr|r}
1 & 0 & 0 & 0 & 3 & -2 & 50 \\
\hline 4 & 0 & 0 & 1 & -1 & 0 & 5 \\
1 & 1 & 0 & 0 & 1 & -2 & 10 \\
0 & 0 & 1 & 0 & 1 & -1 & 15
\end{array} \rightarrow \begin{aligned}
s_{1} & =5+0 s_{3} \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
z & =50+2 s_{3}
\end{aligned}
$$

Direction of unboundedness?

$$
\begin{array}{ll}
x_{1} & =0 \\
x_{2} & =10+2 s_{3} \\
x_{3} & =15+s_{3} \\
s_{1} & =5 \\
s_{2} & =0 \\
s_{3} & =0+s_{3}
\end{array} \quad \rightarrow x=\left[\begin{array}{c}
0 \\
10 \\
15 \\
5 \\
0 \\
0
\end{array}\right]+s_{3}\left[\begin{array}{l}
0 \\
2 \\
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

so $d=(0,2,1,0,0,1)^{T}$ (the other vector is a BFS)

Detect an Unbounded LP

In one column (for one variable), we need:

- The entry in Row 0 is negative

Detect an Unbounded LP

In one column (for one variable), we need:

- The entry in Row 0 is negative Why? That means making the variable >0 will increase z.
- The other entries are all zero or negative, with at least one value not zero.

Detect an Unbounded LP

In one column (for one variable), we need:

- The entry in Row 0 is negative Why? That means making the variable >0 will increase z.
- The other entries are all zero or negative, with at least one value not zero.
Why? The ratio test fails,

Detect an Unbounded LP

In one column (for one variable), we need:

- The entry in Row 0 is negative Why? That means making the variable >0 will increase z.
- The other entries are all zero or negative, with at least one value not zero. Why? The ratio test fails, and this implies that this variable can be increased without bound (and the remaining solution remains feasible).

Detect an Unbounded LP

In one column (for one variable), we need:

- The entry in Row 0 is negative Why? That means making the variable >0 will increase z.
- The other entries are all zero or negative, with at least one value not zero. Why? The ratio test fails, and this implies that this variable can be increased without bound (and the remaining solution remains feasible).
Let's look at other issues that might come up.

The Simplex Method

What other things can happen in the algorithm?

1. Initial BFS from cols of identity
2. Look at Row 0 for neg coeffs:
2.1 Choose the column most negative coef.
2.2 Perform a "ratio test" by taking "RHS/Lead Coeff".

Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.
2.3 Pivot using the column/row we found.
3. If there are no more negative coefficients in Row 0 , we're done.

$$
\begin{aligned}
\max & 3 x_{1}-x_{2}-4 x_{3} \\
\text { st } \quad 3 x_{1}-x_{2}+2 x_{3} & \geq 25 \\
-x_{1}-x_{2}+2 x_{3} & \leq 20 \\
-x_{1}-x_{2}+x_{3} & \geq 5
\end{aligned}
$$

$$
\begin{aligned}
& \max 3 x_{1}-x_{2}-4 x_{3} \\
& \text { st } 3 x_{1}-x_{2}+2 x_{3} \geq 25 \\
& -x_{1}-x_{2}+2 x_{3} \leq 20 \\
& -x_{1}-x_{2}+x_{3} \geq 5
\end{aligned}
$$

Construct the tableau:

z	x_{1}	x_{2}	x_{3}	e_{1}	s_{2}	e_{3}	$r h s$
1	3	-1	-4	0	0	0	0
0	3	-1	2	-1	0	0	25
0	-1	-1	2	0	1	0	20
0	-1	-1	1	0	0	-1	5

$$
\begin{aligned}
& \max 3 x_{1}-x_{2}-4 x_{3} \\
& \text { st } 3 x_{1}-x_{2}+2 x_{3} \geq 25 \\
& -x_{1}-x_{2}+2 x_{3} \leq 20 \\
& -x_{1}-x_{2}+x_{3} \geq 5
\end{aligned}
$$

Construct the tableau:

z	x_{1}	x_{2}	x_{3}	e_{1}	s_{2}	e_{3}	$r h s$
1	3	-1	-4	0	0	0	0
0	3	-1	2	-1	0	0	25
0	-1	-1	2	0	1	0	20
0	-1	-1	1	0	0	-1	5

No initial BFS!

$$
\begin{aligned}
& \max 3 x_{1}-x_{2}-4 x_{3} \\
& \text { st } 3 x_{1}-x_{2}+2 x_{3} \geq 25 \\
& -x_{1}-x_{2}+2 x_{3} \leq 20 \\
& -x_{1}-x_{2}+x_{3} \geq 5
\end{aligned}
$$

Construct the tableau:

z	x_{1}	x_{2}	x_{3}	e_{1}	s_{2}	e_{3}	$r h s$
1	3	-1	-4	0	0	0	0
0	3	-1	2	-1	0	0	25
0	-1	-1	2	0	1	0	20
0	-1	-1	1	0	0	-1	5

No initial BFS!
"The Big-M Method" is later and will fix this.

The Simplex Method

What other things can happen in the algorithm?

1. Initial BFS from cols of identity
2. Look at Row 0 for neg coeffs:
2.1 Choose the column most negative coef.
2.2 Perform a "ratio test" by taking "RHS/Lead Coeff".

Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.
2.3 Pivot using the column/row we found.
3. If there are no more negative coefficients in Row 0 , we're done.

Example:

$$
\begin{array}{rll}
\max _{x} & 6 x_{1}+4 x_{2} \\
\text { s.t. } & x_{1}+ & x_{2} \leq 5 \\
& 3 x_{1}+2 x_{2} \leq 12 \\
& x_{1}, & x_{2} \geq 0
\end{array}
$$

Example:

$$
\begin{array}{rll}
\max _{x} & 6 x_{1}+ & 4 x_{2} \\
\text { s.t. } & x_{1}+ & x_{2} \leq 5 \\
& 3 x_{1}+ & 2 x_{2} \leq 12 \\
& x_{1}, & x_{2} \geq 0
\end{array}
$$

Initial Tableau:

$$
\begin{array}{rrrr|r}
-6 & -4 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 5 \\
3 & 2 & 0 & 1 & 12
\end{array}
$$

Final(?) tableau: Solution is $x_{1}=4, x_{2}=0, s_{1}=1$ and $s_{2}=0$

0	0	0	2	24
0	$1 / 3$	1	$-1 / 3$	1
1	$2 / 3$	0	$1 / 3$	4

Example:

$$
\begin{array}{rll}
\max _{x} & 6 x_{1}+ & 4 x_{2} \\
\text { s.t. } & x_{1}+ & x_{2} \leq 5 \\
& 3 x_{1}+ & 2 x_{2} \leq 12 \\
& x_{1}, & x_{2} \geq 0
\end{array}
$$

Initial Tableau:

-6	-4	0	0	0
1	1	1	0	5
3	2	0	1	12

Final(?) tableau: Solution is $x_{1}=4, x_{2}=0, s_{1}=1$ and $s_{2}=0$

0	0	0	2	24
0	$1 / 3$	1	$-1 / 3$	1
1	$2 / 3$	0	$1 / 3$	4

Can we bring in x_{2} as a basic variable?

We can bring in x_{2} with no change to z :

0	0	0	2	24
0	$1 / 3$	1	$-1 / 3$	1
1	$2 / 3$	0	$1 / 3$	4

\Downarrow				
0	0	0	2	24
0	1	3	-1	3
1	0	-2	1	2

We can bring in x_{2} with no change to z :

0	0	0	2	24
0	$1 / 3$	1	$-1 / 3$	1
1	$2 / 3$	0	$1 / 3$	4

\Downarrow				
0	0	0	2	24
0	1	3	-1	3
1	0	-2	1	2

New solution: $x_{1}=2, x_{2}=3$ with $s_{1}=s_{2}=0$

We can bring in x_{2} with no change to z :

0	0	0	2	24
0	$1 / 3$	1	$-1 / 3$	1
1	$2 / 3$	0	$1 / 3$	4

\Downarrow				
0	0	0	2	24
0	1	3	-1	3
1	0	-2	1	2

New solution: $x_{1}=2, x_{2}=3$ with $s_{1}=s_{2}=0$
Any other solutions?

We can bring in x_{2} with no change to z :

0	0	0	2	24
0	$1 / 3$	1	$-1 / 3$	1
1	$2 / 3$	0	$1 / 3$	4

0	0	0	2	24
0	1	3	-1	3
1	0	-2	1	2

New solution: $x_{1}=2, x_{2}=3$ with $s_{1}=s_{2}=0$
Any other solutions?
(2D) Line between $(4,0)$ and $(2,3)$

Alternative Optimal Solutions

- If a NBV in Row 0 is 0 , and we can pivot in this column (and maintain the same value of z), then we may have alternative optimal solutions.

Alternative Optimal Solutions

- If a NBV in Row 0 is 0 , and we can pivot in this column (and maintain the same value of z), then we may have alternative optimal solutions.
- If two BFS are optimal, the line segment joining them is also optimal (by convexity).

Example

Consider the following "final" tableau:

z	x_{1}	x_{2}	x_{3}	x_{4}	rhs
1	0	0	0	2	2
0	1	0	-1	1	2
0	0	1	-2	3	3

Interpretation?

Example

Consider the following "final" tableau:

z	x_{1}	x_{2}	x_{3}	x_{4}	rhs
1	0	0	0	2	2
0	1	0	-1	1	2
0	0	1	-2	3	3

Interpretation?
Row 0 may have a 0 for x_{3} (z doesn't change)

Example

Consider the following "final" tableau:

z	x_{1}	x_{2}	x_{3}	x_{4}	rhs
1	0	0	0	2	2
0	1	0	-1	1	2
0	0	1	-2	3	3

Interpretation?
Row 0 may have a 0 for x_{3} (z doesn't change)
Entries in the column are all negative or zero,

Example

Consider the following "final" tableau:

z	x_{1}	x_{2}	x_{3}	x_{4}	rhs
1	0	0	0	2	2
0	1	0	-1	1	2
0	0	1	-2	3	3

Interpretation?
Row 0 may have a 0 for x_{3} (z doesn't change)
Entries in the column are all negative or zero, Ratio test fails.

Example

Consider the following "final" tableau:

z	x_{1}	x_{2}	x_{3}	x_{4}	rhs
1	0	0	0	2	2
0	1	0	-1	1	2
0	0	1	-2	3	3

Interpretation?
Row 0 may have a 0 for x_{3} (z doesn't change)
Entries in the column are all negative or zero, Ratio test fails. How many solutions do we have?

$$
\begin{aligned}
& x_{1}=2+x_{3} \\
& x_{2}=3+2 x_{3} \\
& x_{3}=x_{3} \\
& x_{4}=0
\end{aligned}
$$

Example

$$
\begin{aligned}
\min & z=-x_{1}+2 x_{2} \\
\text { st } & x_{1}-x_{2} \leq 1 \\
& x_{1}-2 x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Proceed as usual:

$$
\begin{array}{rrrr|r}
-1 & 2 & 0 & 0 & 0 \\
\hline 1 & -1 & 1 & 0 & 1 \\
1 & -2 & 0 & 1 & 2
\end{array} \Rightarrow \begin{array}{rrrr|r}
0 & 1 & 1 & 0 & 1 \\
\hline 1 & -1 & 1 & 0 & 1 \\
0 & -1 & -1 & 1 & 1
\end{array}
$$

Interpretation?

There is an optimal solution:

$$
(1,0)
$$

The feasible set is unbounded.

Two Types of Unboundedness

- The objective function is unbounded (as is the feasible region).
- The feasible region is unbounded, but the objective function is not.
"The LP is unbounded if there is a negative coefficient in Row 0 , and all the remaining elements in the column are negative or zero"

