The Simplex Method

Standard form (max):

$$\begin{array}{rl} z-c^Tx&=0\\ Ax&=b\\ x\geq 0, &b\geq 0 \end{array}$$

Build initial tableau.

- Find an initial BFS.
- Is the BFS optimal?
 - 1. Yes- We're done.
 - 2. No- Find a (better) adjacent BFS.

Repeat.

Example from Wednesday

LP in standard form:

z	-6x1-	$5x_2 - $	$0s_1 - $	$0s_2 = 0$
	$x_1 +$	x_2+	s_1	= 5
	$3x_1 +$	$2x_2 +$		$s_2 = 12$

Convert to the tableau (left-most column is optional)

z	x_1	x_2	s_1	s ₂	rhs
1	-6	-5	0	0	0
0	1	1	1	0	5
0	3	2	0	1	12

Step 1: Initial BFS- If we have all of the columns of the identity matrix, those variables are set to BV, all others to NBV. Initial BFS

$$x_1 = 0, x_2 = 0, s_1 = 5, s_2 = 12$$
 $z = 0$

Continuing

Which variable should come in to give a better z? From Row 0, most negative var: x_1 . Should we replace s_1 or s_2 (we want to make x_1 as large as possible for the max)

z 1	×1 -6	x ₂ -5	s ₁ 0	s ₂ 0	rhs 0	_	<i>s</i> 1	$= 5 - x_1$	$x_1 \leq 5$
0	1	1	1	0	5	7	s_2	$= 12 - 3x_1$	$x_1 \le 12/3 = 4$
0	3	2	0	1	12				

We can make x_1 as large as 4 (larger makes s_1 negative).That means s_2 is set to zero (and becomes the NBV). Pivot in the first column, second row

After pivoting (note that Row 0 is also computed)

2 1	×1 0	$_{-1}^{x_2}$	s ₁ 0	^s 2 2	rhs 24	
0	0	1/3	1	-1/3	1	
0	1	2/3	0	1/3	4	

Current BFS: $x_1 = 4$, $x_2 = 0$, $s_1 = 1$, $s_2 = 0$. Optimal? No. Bring x_2 in. From our list of BVs:

$$\begin{aligned} x_1 &= 4 - \frac{2}{3} x_2 \quad \Rightarrow \quad x_2 \leq \frac{4}{2/3} = 6 \\ s_1 &= 1 - \frac{1}{3} x_2 \quad \Rightarrow \quad x_2 \leq \frac{1}{1/3} = 3 \end{aligned}$$

Note where these values come from: "RHS/Col Entry". Choose the Row with the smaller value, and that gives the pivot row.

Pivot

The Simplex Method

1. Build initial tableau.

$$\begin{array}{c|c} 1 & -c^T & 0 \\ \hline 0 & A & b \end{array}$$

- 2. Initial BFS from cols of identity
- 3. Look at Row 0 for neg coeffs:
 - 3.1 Choose the column most negative coef.
 - 3.2 Perform a "ratio test" by taking "RHS/Lead Coeff". Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.
 - 3.3 Pivot using the column/row we found.
- If there are no more negative coefficients in Row 0, we're done. (Other stopping criteria later)

Example 2

with z = 27

min	$2x_1 + x_2 - 4x_3$	
st	$3x_1 - x_2 + 2x_3$	≤ 25
	$-x_1 - x_2 + 2x_3$	≤ 20
	$-x_1 - x_2 + x_3$	≤ 5

This is the optimal tableau. The optimal solution is $x_1 = 2, x_2 = 3$

with all variables non-negative.

- ▶ Change the min to a max: max z = −2x₁ − x₂ + 4x₃
- Now construct the tableau and proceed as usual. Be sure to change back to a min at the end.

Initial tableau is using s_1 , s_2 , s_3 as BV. From Row 0, next is x_3 . Perform the ratio test to find the pivot row:

25/2, 20/2, 5/1 ⇒ Row 3

After Row Reduction

	$^{-2}$	-3	0	0	0	4	20
Ì	5	1	0	1	0	-2	15
	1	1	0	0	1	-2	10
	$^{-1}$	$^{-1}$	1	0	0	1	5

Now bring in x_2 , and perform the ratio test to find pivot row.

15/1,10/1

Why do we ignore the third row? It says $x_3 = 5 + x_2$, No restriction on how large x_2 can be.

Summary: New pivot is (2,2) position.

Bring in s3. Ratio test?

 $\begin{array}{rrrr} s_1 &= 5+0s_3\\ x_2 &= 10+2s_3\\ x_3 &= 15+s_3\\ z &= 50+2s_3 \end{array}$

Conclusion? The LP is unbounded

 $s_{\rm 3}$ can be increased without bound, AND that causes z to be unbounded.

Direction of unboundedness?

x =	0 10 15 5	+ s 3	0 2 1 0
~ -	5 0 0	1.20	0 0 1

Detect an Unbounded LP

In one column (for one variable), we need:

- The entry in Row 0 is negative Why? That means making the variable > 0 will increase z.
- The other entries are all zero or negative, with at least one value not zero.

Why? The ratio test fails, and this implies that this variable can be increased without bound (and the remaining solution remains feasible).

Let's look at other issues that might come up.

Direction of Unboundedness

1	0	0	0	3	$^{-2}$	50		s_1	$= 5 + 0s_3$
4	0	0	1	-1	0	5	۰.	x_2	$= 10 + 2s_3$
1	1	0	0	1	$^{-2}$	10		x_3	$= 15 + s_3$
0	0	1	0	1	$^{-1}$	15		z	$= 50 + 2s_3$

Direction of unboundedness?

x_1	= 0		[0]		ΓO
X_2	$= 10 + 2s_3$		10		2
X3	$= 15 + s_3$		15		1
51	= 5	$\rightarrow x =$	5	+ 53	0
\$2	= 0		0		0
53	$= 0 + s_3$		0		1

The Simplex Method

	st	$3x_1 - x_2 + 2x_3$	≥ 25
What other things can happen in the algorithm?		$-x_1 - x_2 + 2x_3$	≤ 20
1. Initial BFS from cols of identity		$-x_1 - x_2 + x_3$	≥ 5
2. Look at Row 0 for neg coeffs:	Construct the tableau:		
2.1 Choose the column most negative coef.			

- 2.2 Perform a "ratio test" by taking "RHS/Lead Coeff". Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.
- 2.3 Pivot using the column/row we found
- 3. If there are no more negative coefficients in Row 0, we're done.

5 20

 $\max 3x_1 - x_2 - 4x_3$

z	<i>x</i> 1	X2	X3	e1	\$2	e3	rhs
1	3	$^{-1}$	-4	0	0	0	0
0	3	$^{-1}$	2	-1	0	0	25
0	$^{-1}$	$^{-1}$	2	0	1	0	20
0	$^{-1}$	$^{-1}$	1	0	0	$^{-1}$	5

No initial BFS!

"The Big-M Method" is later and will fix this.

The Simplex Method

e Simplex Method	Evenneler
	Example.
	maxy oxi + tx2
	s.t. $x_1 + x_2 \le 5$
	$3x_1 + 2x_2 \le 12$
What other things can happen in the algorithm?	$x_1, x_2 \ge 0$
1. Initial BFS from cols of identity	Initial Tableau:
Look at Row 0 for neg coeffs:	-6 -4 0 0 0
2.1 Choose the column most negative coef.	1 1 1 0 5
2.2 Perform a "ratio test" by taking "RHS/Lead Coeff".	3 2 0 1 12
Exceptions: Ignore zeros and neg coeffs. Choose the row with the smallest ratio.	Final(?) tableau: Solution is $x_1 = 4$, $x_2 = 0$, $s_1 = 1$ and $s_2 = 0$
2.3 Pivot using the column/row we found.	
3. If there are no more percetive coefficients in Row 0, we're done	0 0 0 2 24
5. If there are no more negative coefficients in now 0, we re done.	0 1/3 1 -1/3 1
	1 2/3 0 1/3 4

Can we bring in x2 as a basic variable?

Alternative Optimal Solutions

We can bring in x2 with no change to z:

	0	0	0	2	24			
	0	1/3	1	-1/3	1			
	1	2/3	0	1/3	4			
ψ.								
	0	0	0	2	24			
	0	1	3	$^{-1}$	3			
	1	0	$^{-2}$	1	2			
2	xa	= 3	with	s1 =	$s_1 = 0$			

New solution: $x_1 = 2, x_2 = 3$ with $s_1 = s_2 =$ Any other solutions? (2D) Line between (4, 0) and (2, 3)

If a NBV in Row 0 is 0, and we can pivot in this column (and maintain the same value of z), then we may have alternative optimal solutions.

 If two BFS are optimal, the line segment joining them is also optimal (by convexity).

Example

Consider the following "final" tableau:

z	x_1	x_2	x_3	x_4	rhs
1	0	0	0	2	2
_		-			
U	1	0	$^{-1}$	1	2

Interpretation?

Row 0 may have a 0 for x_3 (z doesn't change) Entries in the column are all negative or zero, Ratio test fails. How many solutions do we have?

$$x_1 = 2 + x_3$$

 $x_2 = 3 + 2x_3$
 $x_3 = x_3$
 $x_4 = 0$

Example

min
$$z = -x_1 + 2x_2$$

st $x_1 - x_2 \le 1$
 $x_1 - 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Proceed as usual:

Interpretation?

Two Types of Unboundedness

There is an optimal solution:

(1,0)

The feasible set is unbounded.

- The objective function is unbounded (as is the feasible region).
- The feasible region is unbounded, but the objective function is not.

"The LP is unbounded if there is a negative coefficient in Row 0, and all the remaining elements in the column are negative or zero"