Take Home Quiz (Quiz 4)

Write the solutions to the following and upload to Canvas. The due date is Friday at 11:59 PM.

In the textbook's "Dakota Problem", we are making desks, tables and chairs, and we want to maximize profit given constraints on lumber, finishing and carpentry (resp). For the primal, let x_1, x_2, x_3 be the number of desks, tables and chairs we make (resp), where the original (max) tableau is as given below:

	x_1	x_2	x_3	s_1	s_2	s_3	rhs		x_1	x_2	x_3	s_1	s_2	s_3	rhs
	-60	-30	-20	0	0	0	0		0	5	0	0	10	10	280
-	8	6	1	1	0	0	48	\rightarrow	0	-2	0	1	2	-8	24
	4	2	$\frac{3}{2}$	0	1	0	20		0	-2	1	0	2	-4	8
	2	$\frac{3}{2}$	$\frac{1}{2}$	0	0	1	8		1	$\frac{5}{4}$	0	0	$-\frac{1}{2}$	$\frac{3}{2}$	2

1. Write the down vectors/matrices that we typically use in our computations. Namely, $\mathbf{c}, \mathbf{c}_B, B$, and B^{-1} .

2. Using our vector notation, if \mathcal{B} gives the optimal basis, how do we compute the dual, $\mathbf{y} = ?$

3. Write down the dual (either as an initial tableau or in "normal form").

4. Using the optimal Row 0 from the primal, write down the solution to the dual:

- 5. In our "normal form", we have $A\mathbf{x} \leq \mathbf{b}$ for the primal and $A^T\mathbf{y} \geq \mathbf{c}$ for the dual. We will define two "slacks" ¹
 - The "slack" for the primal, given \mathbf{x} : $\mathbf{b} A\mathbf{x}$. Compute the current slack for the primal.
 - The "slack" for the dual, given \mathbf{y} : $A^T\mathbf{y} \mathbf{c}$. Compute the current slack for the dual. You can use your answer to (3) if necessary.
- 6. What is the shadow price for each constraint?
- 7. Write down the inequalit(ies) we need for Δ if we change the coefficient of x_2 from 30 to $30 + \Delta$, and we want the current basis to remain optimal.
- 8. Write down the inequalit(ies) we need for Δ if we change the coefficient of x_3 from 20 to $20 + \Delta$, and we want the current basis to remain optimal.

- 9. How does changing a *column* of A effect the dual? Use this to see what would happen if we change the column for x_2 (tables) to be $[5,2,2]^T$ Is it now worth it to make tables?
- 10. How does creating a new column of A effect the dual? Use this to see if it makes sense to manufacture footstools, where we sell them for \$15 each, and the resources are $[1, 1, 1]^T$.

¹Sorry, the vocabulary is related to the "slack variable", but we're using "slack" in a different context now. Ask if you're ever not sure which we're talking about.