Review Material, Exam 2, Ops Research

1. Prove the weak duality theorem: For any ${\bf x}$ feasible for the primal and ${\bf y}$ feasible for the dual, then...

HINT: Put the primal so that $A\mathbf{x} \leq \mathbf{b}$ and the dual so that $A^T\mathbf{y} \geq \mathbf{c}$

2. Show that the solution to the dual is $\mathbf{y} = (\mathbf{c}_B^T B^{-1})^T$ (if the primal and dual are both feasible).

HINT: Strong duality might be useful.

3. Solve using big-M:

$$\max z = 2x_1 + 3x_2$$

$$\text{st} 2x_1 + x_2 \ge 4$$

$$x_1 - x_2 \ge -1$$

$$x_2 \le 3$$

$$x_1, x_2 > 0$$

- 4. Solve the last problem again using the dual simplex method.
- 5. Going back to the original LP in (1), if the constraint $x_1 + x_2 \le 4$ is added, does the basis stay optimal? If not, find the new basis (and the new solution).
- 6. Using the big-M method on a maximization problem, I got the following tableau:

	x_1	x_2	x_3	s_1	e_1	e_2	a_1	a_2	rhs
	-1/2 + 2M	-5/2 + M	M	1/2 + M	M	M	0	0	2-3M
$\overline{x_3}$	1/2	1/2	1	1/2	0	0	0	0	2
a_1	-3/2	-1/2	0	-1/2	-1	0	1	0	2
a_2	-1/2	-1/2	0	-1/2	0	-1	0	1	1

Should I stop or should I go? If I stop, what should I conclude?

7. Use the two phase method to solve the following

$$\max z = x_1 + x_2$$

$$\text{st} \quad x_1 - x_2 - x_3 = 1$$

$$-x_1 + x_2 + 2x_3 - x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0$$

8. Consider the LP and the optimal tableau with missing Row 0.

Find Row 0.

9. Consider the following LP and its optimal tableau:

- (a) Find the range of values for the coefficient of x_3 which keeps the current basis optimal.
- (b) Find the range of values for the coefficient of x_1 which keeps the current basis optimal.
- (c) Find the range of values for the RHS of each constraint that keeps the current basis optimal.
- (d) Write the dual, and solve it using the tableau for the primal (given above).
- 10. Give an argument why, if the primal is unbounded, then the dual must be infeasible.

Chapter 6 Review Problems:

3, 4 (except 4(b)), 6, 9, 10, 16, 17, 20, 21, 23, 33, 34.