
Introduction to Matlab

Math 339

Fall 2013



First, put the icon in the launcher: Drag and drop



Now, open Matlab:

* Current Folder * Command Window * Workspace * Command History



Operations in Matlab

Description: In Matlab: Try typing:

Assignment is = x=3 x=3 versus 3=x
The constant π pi a = cos(π/3)
The exponential ex exp(x) exp(a)
Complex numbers i or j (1-3*i)*(5-2*i)
Go to previous line Up arrow key Change x=3 to x=5;
Suppress output ;
Clear memory clear
Clear the screen clc

(You don’t need the * for complex numbers, but it’s good practice)



Entering Arrays:

I A row vector stored in variable xr:

xr=[1,2,3,4,5]

I Inside an array, semi-colon ends a row. To enter vector xc:

xc=[1;2;3;4;5];

xc1=xr’; %Transpose is the apostrophe

I An array can be entered row-wise with semicolons ending each
row:

A=[1 2 3;4 5 6];

I You can find the length of a vector or the size of a matrix:

n1=length(xc)

[numrows,numcols]=size(A)



Entering Arrays:

I A row vector stored in variable xr:

xr=[1,2,3,4,5]

I Inside an array, semi-colon ends a row. To enter vector xc:

xc=[1;2;3;4;5];

xc1=xr’; %Transpose is the apostrophe

I An array can be entered row-wise with semicolons ending each
row:

A=[1 2 3;4 5 6];

I You can find the length of a vector or the size of a matrix:

n1=length(xc)

[numrows,numcols]=size(A)



Entering Arrays:

I A row vector stored in variable xr:

xr=[1,2,3,4,5]

I Inside an array, semi-colon ends a row. To enter vector xc:

xc=[1;2;3;4;5];

xc1=xr’; %Transpose is the apostrophe

I An array can be entered row-wise with semicolons ending each
row:

A=[1 2 3;4 5 6];

I You can find the length of a vector or the size of a matrix:

n1=length(xc)

[numrows,numcols]=size(A)



Entering Arrays:

I A row vector stored in variable xr:

xr=[1,2,3,4,5]

I Inside an array, semi-colon ends a row. To enter vector xc:

xc=[1;2;3;4;5];

xc1=xr’; %Transpose is the apostrophe

I An array can be entered row-wise with semicolons ending each
row:

A=[1 2 3;4 5 6];

I You can find the length of a vector or the size of a matrix:

n1=length(xc)

[numrows,numcols]=size(A)



More on Arrays:

I Arrays can be accessed (and changed) element-wise.
For example, change the (1, 2) entry in matrix A to −3:

A(1,2)=-3;

I What does the following command do?

B=A([1,1,2],[2,1,3])

B =

 −3 1 3
−3 1 3

5 4 6

 =

 A(1, 2) A(1, 1) A(1, 3)
A(1, 2) A(1, 1) A(1, 3)
A(2, 2) A(2, 1) A(2, 3)





More on Arrays:

I Arrays can be accessed (and changed) element-wise.
For example, change the (1, 2) entry in matrix A to −3:

A(1,2)=-3;

I What does the following command do?

B=A([1,1,2],[2,1,3])

B =

 −3 1 3
−3 1 3

5 4 6

 =

 A(1, 2) A(1, 1) A(1, 3)
A(1, 2) A(1, 1) A(1, 3)
A(2, 2) A(2, 1) A(2, 3)





More on Arrays:

I Arrays can be accessed (and changed) element-wise.
For example, change the (1, 2) entry in matrix A to −3:

A(1,2)=-3;

I What does the following command do?

B=A([1,1,2],[2,1,3])

B =

 −3 1 3
−3 1 3

5 4 6

 =

 A(1, 2) A(1, 1) A(1, 3)
A(1, 2) A(1, 1) A(1, 3)
A(2, 2) A(2, 1) A(2, 3)





The colon operator: A quick way to make a vector
Examples:

I x=2:9 The vector x is the set of integers from 2 to 9.

2 3 4 5 6 7 8 9

I x=8:-2:1 Start at 8, decrease by 2 until 1 (or just before).

8 6 4 2

I x=2:3:10 Start at 2, increase by 3 until 10 (or just before)

2 5 8

I What is the Matlab command to produce the odd numbers
between 3 and 11?

3:2:11



The colon operator: A quick way to make a vector
Examples:

I x=2:9 The vector x is the set of integers from 2 to 9.

2 3 4 5 6 7 8 9

I x=8:-2:1 Start at 8, decrease by 2 until 1 (or just before).

8 6 4 2

I x=2:3:10 Start at 2, increase by 3 until 10 (or just before)

2 5 8

I What is the Matlab command to produce the odd numbers
between 3 and 11?

3:2:11



The colon operator: A quick way to make a vector
Examples:

I x=2:9 The vector x is the set of integers from 2 to 9.

2 3 4 5 6 7 8 9

I x=8:-2:1 Start at 8, decrease by 2 until 1 (or just before).

8 6 4 2

I x=2:3:10 Start at 2, increase by 3 until 10 (or just before)

2 5 8

I What is the Matlab command to produce the odd numbers
between 3 and 11?

3:2:11



The colon operator: A quick way to make a vector
Examples:

I x=2:9 The vector x is the set of integers from 2 to 9.

2 3 4 5 6 7 8 9

I x=8:-2:1 Start at 8, decrease by 2 until 1 (or just before).

8 6 4 2

I x=2:3:10 Start at 2, increase by 3 until 10 (or just before)

2 5 8

I What is the Matlab command to produce the odd numbers
between 3 and 11?

3:2:11



The colon operator: A quick way to make a vector
Examples:

I x=2:9 The vector x is the set of integers from 2 to 9.

2 3 4 5 6 7 8 9

I x=8:-2:1 Start at 8, decrease by 2 until 1 (or just before).

8 6 4 2

I x=2:3:10 Start at 2, increase by 3 until 10 (or just before)

2 5 8

I What is the Matlab command to produce the odd numbers
between 3 and 11?

3:2:11



The colon operator: A quick way to make a vector
Examples:

I x=2:9 The vector x is the set of integers from 2 to 9.

2 3 4 5 6 7 8 9

I x=8:-2:1 Start at 8, decrease by 2 until 1 (or just before).

8 6 4 2

I x=2:3:10 Start at 2, increase by 3 until 10 (or just before)

2 5 8

I What is the Matlab command to produce the odd numbers
between 3 and 11?

3:2:11



The colon operator: A quick way to make a vector
Examples:

I x=2:9 The vector x is the set of integers from 2 to 9.

2 3 4 5 6 7 8 9

I x=8:-2:1 Start at 8, decrease by 2 until 1 (or just before).

8 6 4 2

I x=2:3:10 Start at 2, increase by 3 until 10 (or just before)

2 5 8

I What is the Matlab command to produce the odd numbers
between 3 and 11?

3:2:11



How would I get 5 evenly spaced points between (and including)
1.3 and 4.6?

\linspace(1.3,4.6,5);

General command:

linspace(a,b) (Default is 100 points)

linspace(a,b,c) (c points evenly spaced between a and b)

Get 100 points between -1 and 10: linspace(-1,10)



How would I get 5 evenly spaced points between (and including)
1.3 and 4.6?

\linspace(1.3,4.6,5);

General command:

linspace(a,b) (Default is 100 points)

linspace(a,b,c) (c points evenly spaced between a and b)

Get 100 points between -1 and 10: linspace(-1,10)



How would I get 5 evenly spaced points between (and including)
1.3 and 4.6?

\linspace(1.3,4.6,5);

General command:

linspace(a,b) (Default is 100 points)

linspace(a,b,c) (c points evenly spaced between a and b)

Get 100 points between -1 and 10: linspace(-1,10)



How would I get 5 evenly spaced points between (and including)
1.3 and 4.6?

\linspace(1.3,4.6,5);

General command:

linspace(a,b) (Default is 100 points)

linspace(a,b,c) (c points evenly spaced between a and b)

Get 100 points between -1 and 10:

linspace(-1,10)



How would I get 5 evenly spaced points between (and including)
1.3 and 4.6?

\linspace(1.3,4.6,5);

General command:

linspace(a,b) (Default is 100 points)

linspace(a,b,c) (c points evenly spaced between a and b)

Get 100 points between -1 and 10: linspace(-1,10)



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2)

Matrix A is filled with random1 numbers.

I A=randn(4,5) Matrix A is filled with random2 numbers.

I A=eye(4) The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2) Matrix A is filled with random1 numbers.

I A=randn(4,5) Matrix A is filled with random2 numbers.

I A=eye(4) The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2) Matrix A is filled with random1 numbers.

I A=randn(4,5)

Matrix A is filled with random2 numbers.

I A=eye(4) The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2) Matrix A is filled with random1 numbers.

I A=randn(4,5) Matrix A is filled with random2 numbers.

I A=eye(4) The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2) Matrix A is filled with random1 numbers.

I A=randn(4,5) Matrix A is filled with random2 numbers.

I A=eye(4)

The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2) Matrix A is filled with random1 numbers.

I A=randn(4,5) Matrix A is filled with random2 numbers.

I A=eye(4) The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2) Matrix A is filled with random1 numbers.

I A=randn(4,5) Matrix A is filled with random2 numbers.

I A=eye(4) The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Special Arrays: Try typing these in- What does it mean?

I A=rand(3,2) Matrix A is filled with random1 numbers.

I A=randn(4,5) Matrix A is filled with random2 numbers.

I A=eye(4) The 4 × 4 identity matrix.

I Let B=[1 2;3 4]. What does A=repmat(B,2,3) do?

A =

[
B B B
B B B

]
=


1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4



1Random here means uniformly distributed between 0 and 1.
2Random here means a normal distribution with zero mean and unit std.



Linear Algebra works in a natural way.
Define x as a random 3 × 1 vector, A as a random 3 × 2 matrix, B
as a random 3 × 3 matrix, and C as 2 × 3 random matrix. (Use
either kind of random number)

x=rand(3,1);

A=randn(3,2);

B=rand(3,3);

C=randn(2,3);

Are the following defined?

A*x C*x A*C C*B x’*A

(The only expression not defined is Ax)



Linear Algebra works in a natural way.
Define x as a random 3 × 1 vector, A as a random 3 × 2 matrix, B
as a random 3 × 3 matrix, and C as 2 × 3 random matrix. (Use
either kind of random number)

x=rand(3,1);

A=randn(3,2);

B=rand(3,3);

C=randn(2,3);

Are the following defined?

A*x C*x A*C C*B x’*A

(The only expression not defined is Ax)



Linear Algebra works in a natural way.
Define x as a random 3 × 1 vector, A as a random 3 × 2 matrix, B
as a random 3 × 3 matrix, and C as 2 × 3 random matrix. (Use
either kind of random number)

x=rand(3,1);

A=randn(3,2);

B=rand(3,3);

C=randn(2,3);

Are the following defined?

A*x C*x A*C C*B x’*A

(The only expression not defined is Ax)



Linear Algebra works in a natural way.
Define x as a random 3 × 1 vector, A as a random 3 × 2 matrix, B
as a random 3 × 3 matrix, and C as 2 × 3 random matrix. (Use
either kind of random number)

x=rand(3,1);

A=randn(3,2);

B=rand(3,3);

C=randn(2,3);

Are the following defined?

A*x C*x A*C C*B x’*A

(The only expression not defined is Ax)



The Dot Operator

The dot operator tells Matlab to perform the operation following
it, element-by-element.
For example: A.*C’

Other examples:

I Raise all the entries in the vector x to the third power: y=x.^3

I Add 2 to every element in the matrix C: C+2 (No dot needed)

I Is there a difference between B2 and B.^2? (Yes)

I What happens: sin(A) and exp(-B)



The Dot Operator

The dot operator tells Matlab to perform the operation following
it, element-by-element.
For example: A.*C’

Other examples:

I Raise all the entries in the vector x to the third power:

y=x.^3

I Add 2 to every element in the matrix C: C+2 (No dot needed)

I Is there a difference between B2 and B.^2? (Yes)

I What happens: sin(A) and exp(-B)



The Dot Operator

The dot operator tells Matlab to perform the operation following
it, element-by-element.
For example: A.*C’

Other examples:

I Raise all the entries in the vector x to the third power: y=x.^3

I Add 2 to every element in the matrix C: C+2 (No dot needed)

I Is there a difference between B2 and B.^2? (Yes)

I What happens: sin(A) and exp(-B)



The Dot Operator

The dot operator tells Matlab to perform the operation following
it, element-by-element.
For example: A.*C’

Other examples:

I Raise all the entries in the vector x to the third power: y=x.^3

I Add 2 to every element in the matrix C: C+2 (No dot needed)

I Is there a difference between B2 and B.^2? (Yes)

I What happens: sin(A) and exp(-B)



The Dot Operator

The dot operator tells Matlab to perform the operation following
it, element-by-element.
For example: A.*C’

Other examples:

I Raise all the entries in the vector x to the third power: y=x.^3

I Add 2 to every element in the matrix C: C+2 (No dot needed)

I Is there a difference between B2 and B.^2?

(Yes)

I What happens: sin(A) and exp(-B)



The Dot Operator

The dot operator tells Matlab to perform the operation following
it, element-by-element.
For example: A.*C’

Other examples:

I Raise all the entries in the vector x to the third power: y=x.^3

I Add 2 to every element in the matrix C: C+2 (No dot needed)

I Is there a difference between B2 and B.^2? (Yes)

I What happens: sin(A) and exp(-B)



The Dot Operator

The dot operator tells Matlab to perform the operation following
it, element-by-element.
For example: A.*C’

Other examples:

I Raise all the entries in the vector x to the third power: y=x.^3

I Add 2 to every element in the matrix C: C+2 (No dot needed)

I Is there a difference between B2 and B.^2? (Yes)

I What happens: sin(A) and exp(-B)



Other linear algebra operations:

I det(A) is the determinant of A

I [V,D]=eig(A); Matrix V holds the eigenvectors, D the
eigenvalues of A.

I X=linsolve(A,B) Solve the system AX = B for X .



More with Arrays: (For demonstrations, let A be a random 6 × 6
matrix).

The notation: Yields:

A(i,j) The (i , j)th element

A(i,:) The entire ith row

A(:,j) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4 × 2 submatrix



Examples:

1. Assign vector x to the 3rd column of A:

x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A:

y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A:

A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c:

c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



Examples:

1. Assign vector x to the 3rd column of A: x=A(:,3);

2. Assign vector y to the 4th row of A: y=A(4,:);

3. Append the vector x to the last column of A: A=[A, x];

4. Solve Ac = x for c: c=linsolve(A,x)



To delete rows/columns, assign the row/column to the “empty
array”: []. For example, delete row 3 from the matrix A:

size(A)

A(3,:)=[];

size(A)

For a new array, let’s load an image. A picture of a clown is
built-in to Matlab for demonstrations:

clear

clc

load clown

whos

image(X);

colormap(map);



To delete rows/columns, assign the row/column to the “empty
array”: []. For example, delete row 3 from the matrix A:

size(A)

A(3,:)=[];

size(A)

For a new array, let’s load an image. A picture of a clown is
built-in to Matlab for demonstrations:

clear

clc

load clown

whos

image(X);

colormap(map);



Delete all of the odd rows and even columns out of the image, and
show the result (we’ll save the original image in X and put the
modified matrix in Y ):

Y=X;

Y(1:3:end,:)=[];

Y(:,2:2:end)=[];

image(Y);



Plotting functions: You need both a domain and a range.

I Example: Plot y = sin(x) for −π ≤ x ≤ 3π.

x=linspace(-pi,3*pi,200);

y=sin(x);

plot(x,y);

I Multiple plots on one graph: Plot the sine using green solid
line, the parabola using black dash-dotted line, and the
exponential using magenta dotted line:

x1=linspace(-2,2);

y1=sin(x1);

y2=x1.^2;

x2=linspace(-2,1);

y3=exp(x2);

plot(x1,y1,’g-’,x1,y2,’k-.’,x2,y3,’m:’);



Plotting functions: You need both a domain and a range.

I Example: Plot y = sin(x) for −π ≤ x ≤ 3π.

x=linspace(-pi,3*pi,200);

y=sin(x);

plot(x,y);

I Multiple plots on one graph: Plot the sine using green solid
line, the parabola using black dash-dotted line, and the
exponential using magenta dotted line:

x1=linspace(-2,2);

y1=sin(x1);

y2=x1.^2;

x2=linspace(-2,1);

y3=exp(x2);

plot(x1,y1,’g-’,x1,y2,’k-.’,x2,y3,’m:’);



To see the plotting options, type help plot

Code Color Symbol

y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus
g green − solid
b blue ∗ star
w white : dotted
k black −. dashdot

−− dashed
For more, type doc plot



Files called “scripts” are text files with Matlab commands that are
executed when they are called in the command window. These
take the place of the Maple worksheet.

EXAMPLE: Write a script function that will perform Newton’s
Method on the function x − e−x starting at x = −1 until the
solution is gives f to within 10−6.
SOLUTION:

I Open the editor from the command window: edit

I Type the following:



% Script file that performs Newton’s Method

f=inline(’x-exp(-x)’); df=inline(’1+exp(-x)’);

x(1)=-1;

for j=1:100

y(j)=f(x(j));

dy(j)=df(x(j));

x(j+1)=x(j)-y(j)/dy(j);

if abs(y(j))<10^(-6)

break;

end

end

Save the result as “Script01.m”



To run the script, in the command window, type

Script01

(Do not type the file suffix (.m)).
To see the variables, type x and y:

x

y

We can’t see many of the digits! To see more, type

format long

y

format short

y



To publish: Example is Script02.m
(Open editor, then File, then Publish Script02)



Functions:

I Are text files with .m suffix (just like a script)

I Have inputs and produce outputs (not like a script)

I Use local variables (not like a script)

I The first line of the .m file is the key



Functions:

I Are text files with .m suffix (just like a script)

I Have inputs and produce outputs (not like a script)

I Use local variables (not like a script)

I The first line of the .m file is the key



Functions:

I Are text files with .m suffix (just like a script)

I Have inputs and produce outputs (not like a script)

I Use local variables (not like a script)

I The first line of the .m file is the key



Functions:

I Are text files with .m suffix (just like a script)

I Have inputs and produce outputs (not like a script)

I Use local variables (not like a script)

I The first line of the .m file is the key



Functions:

I Are text files with .m suffix (just like a script)

I Have inputs and produce outputs (not like a script)

I Use local variables (not like a script)

I The first line of the .m file is the key



Example: Compute cost to produce a cylindrical can.
What should be the inputs and outputs?

I Input: Radius r , Height h.

I Also: Cost for top/bottom, Ct, Cost for sides: Cs

I Output: Cost C and perhaps Surface Area as well.

Cost:
C = Ct(2πr2) + Cs(2πrh)

Surface Area:
A = 2πr2 + 2πrh



Example: Compute cost to produce a cylindrical can.
What should be the inputs and outputs?

I Input: Radius r , Height h.

I Also:

Cost for top/bottom, Ct, Cost for sides: Cs

I Output: Cost C and perhaps Surface Area as well.

Cost:
C = Ct(2πr2) + Cs(2πrh)

Surface Area:
A = 2πr2 + 2πrh



Example: Compute cost to produce a cylindrical can.
What should be the inputs and outputs?

I Input: Radius r , Height h.

I Also: Cost for top/bottom, Ct, Cost for sides: Cs

I Output:

Cost C and perhaps Surface Area as well.

Cost:
C = Ct(2πr2) + Cs(2πrh)

Surface Area:
A = 2πr2 + 2πrh



Example: Compute cost to produce a cylindrical can.
What should be the inputs and outputs?

I Input: Radius r , Height h.

I Also: Cost for top/bottom, Ct, Cost for sides: Cs

I Output: Cost C and perhaps Surface Area as well.

Cost:

C = Ct(2πr2) + Cs(2πrh)

Surface Area:
A = 2πr2 + 2πrh



Example: Compute cost to produce a cylindrical can.
What should be the inputs and outputs?

I Input: Radius r , Height h.

I Also: Cost for top/bottom, Ct, Cost for sides: Cs

I Output: Cost C and perhaps Surface Area as well.

Cost:
C = Ct(2πr2) + Cs(2πrh)

Surface Area:
A = 2πr2 + 2πrh



function [C,A]=canFunction(r,h,Ct,Cs)

% function [C,A]=canFunction(r,h,Ct,Cs)

% Computes the cost C and surface area A of a can.

% Input: radius r, height h, Ct, Cs are costs of

% top/bottom and sides.

% Output: Cost and Surface Area (in that order)

TopBottom=2*pi*r^2;

Sides=2*pi*r*h;

C=Ct*TopBottom+Cs*Sides;

A=TopBottom+Sides;

Save this file as the function name with a .m. suffix, or,
canFunction.m.



Some things to notice about a function:

I The first line should always begin with the word “function”.
This is how Matlab distinguishes between a script and a
function.

I You should always include remarks that tell you how to use
the function.

Now in the command window, we can type things like:

help canFunction

[C,A]=canFunction(3,6,10,15);

You should notice that when the function is called, only the output
variable names are present- that is, the variables TopBottom and
Sides that the function uses are only present for the function itself
(these are called “local variables” in computer programming).


	Introduction
	Type Commands Live
	Arrays
	Colon Operator
	linspace
	Dot operator
	More on Arrays
	Example: Clown

	Basic Plotting
	Scripts
	Functions

