Definitions and Theorems: Chapter 4

- A basic solution to $A\mathbf{x} = \mathbf{b}$, where A is $m \times n$ with rank m, is found by choosing m linearly independent columns of A and setting the remaining n m variables to zero.
- Vars corresponding to the linearly indep cols are **basic variables** (BV).
- The other vars are the **nonbasic variables** (NBV).
- If one or more of the basic variables is zero (also), then the basic solution is called **degenerate**, otherwise it is **nondegenerate**.
- The basic solution is **feasible** if every element of the vector is non-negative. In this case, the solution is called a **basic feasible solution**, or BFS.
- Given a convex set S, point \mathbf{x} is an **extreme point** if each line segment that lies completely in S and contains the point \mathbf{x} has \mathbf{x} as an endpoint.

Alternatively, given a line segment containing \mathbf{x} that lies entirely in S so that:

$$\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$$

for some $\mathbf{x}_1, \mathbf{x}_2$ in S, then $\lambda = 0$ or $\lambda = 1$.

As a second alternative definition, \mathbf{x} is an extreme point of S if there is no way that \mathbf{x} can be expressed as $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$ for $0 < \lambda < 1$ (and $\mathbf{x}_1, \mathbf{x}_2 \in S$).

• A point \mathbf{x} is a vertex of the polyhedron P if there is a vector \mathbf{c} such that

$$\mathbf{c}^T \mathbf{x} < \mathbf{c}^T \mathbf{y}$$

for all $\mathbf{y} \neq \mathbf{x} \in P$. This means that there is an (affine) hyperplane for which P is entirely contained on one side, and the only point of intersection is \mathbf{x} .

NOTE: In this case, we are thinking of the plane as being defined by $\mathbf{c}^T \mathbf{x} + b = 0$.

- **Definition:** Let A be an $m \times n$ matrix with rank m, and let $S = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{b}\}$ be the feasible region of some LP in standard form. A vector $\mathbf{d} \neq 0$ is called a **direction of unboundedness** (for either S or the LP) if, for every \mathbf{x} and number $\lambda \geq 0$, the ray $\mathbf{x} + \lambda \mathbf{d} \in S$
- Lemma 1 (to be proven): For an LP in standard form $A\mathbf{x} = \mathbf{b}$, and $\mathbf{x} \ge 0$, the vector \mathbf{d} is a direction of unboundedness iff $A\mathbf{d} = 0$ and $\mathbf{d} \ge 0$ (therefore, \mathbf{d} is in the null space of A)
- Lemma 2 (to be proven): For an LP in standard form, where we optimize $\mathbf{c}^T \mathbf{x}$ and if \mathbf{d} is a direction of unboundedness, then \mathbf{c} and \mathbf{d} are orthogonal.
- Definition: Let $\mathbf{x}_1, \dots, \mathbf{x}_k$ be points in \mathbb{R}^n . Then we'll recall that a linear combination is any sum of the form:

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \cdots + c_k\mathbf{x}_k$$

for any scalars c_1, \ldots, c_k .

• Definition: A convex combination of the (vectors or points) is any sum of the form

$$\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \dots + \lambda_k \mathbf{x}_k$$

where $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$.

- Definition: The **convex hull** of $\mathbf{x}_1, \dots, \mathbf{x}_k$ is the set of all convex combinations of our k points.
- Lemma 3: Let $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$, and let $\sigma_i \geq 0$ and $\sum \sigma_i = 1$. Then

$$\lambda_1 \le \sigma_1 \lambda_1 + \sigma_2 \lambda_2 + \dots + \sigma_n \lambda_n \le \lambda_n$$

"Any convex combination of numbers will be larger than the minimum of those numbers and smaller than the maximum."

• The Representation Theorem (Text's Thm 2) Consider an LP in standard form with a non-empty feasible region $S = \{ \mathbf{x} \mid A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0 \}$, with k BFS (or vertices, to be proven), $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_k$.

Then any point in S can be written as a combination of \mathbf{d} and a **convex combination** of the extreme points. In other words, we can express \mathbf{x} as:

$$\mathbf{x} = c\mathbf{d} + \sum_{i=1}^{k} \sigma_i \mathbf{b}_i$$

with $\sigma_i \geq 0$ and $\sum \sigma_i = 1$ and c > 0.

• Theorem 3: The Fundamental Theorem of Linear Programming

If there is a solution to a linear programming problem, then it will occur at an extreme point, or on a line segment between two corner points.