
A Fundamental Theorem

There is something called The Fundamental Theorem of Linear Programming, which goes
something like this:

If there is a solution to a linear programming problem, then it will occur at an
extreme point, or on a line segment between two corner points. (This does not
preclude the case of more than two corner points)

Our text uses the following theorem (Theorem 3) instead: If an LP has an optimal
solution, then it has an optimal BFS (and by Theorem 1, it has an optimal extreme point).

Before we get into the proof, consider the following Lemma:

Let x be in the feasible set of a linear program. Then by the Representation
Theorem, we can write:

x = d +
k∑

i=1

σibi

(with the caveats from the Representation Theorem). We notice that from this
representation, I can multiply the vector d by any non-negative constant λ and
remain in the feasible set:

x′ = λd +
k∑

i=1

σibi

Exercise 1: Prove this statement.

Proof:

Let x be optimal. We want to show x is a basic feasible solution (or equivalently, an extreme
point or vertex).

Since x is feasible, by the Representation Theorem we can write as a combination of a
direction of unboundedness and the vertices of the feasible set:

x = d +
k∑

i=1

σibi

Saying that this is an optimal solution implies that cTx is a maximum. Therefore, the following
is a maximum (over all possible x):

cTx = cTd +
k∑

i=1

σic
Tbi

We now show that because this is optimal, the direction of unboundedness must be orthogonal
to c. Why is this? Suppose not:

• Case 1: d = ~0. In that case, x is a convex combination of BFS (go to the next step of
the proof).
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• Case 2: cTd > 0. If this is true, let

x′ = 10d +
k∑

i=1

σibi

where the σi are from the representation for x. Then cTx′ is larger than cTx. But this
is a contradiction, as this was a maximum.

• Case 3: cTd < 0. If this is the case, then (set d = 0) and consider cTx′ again, where:

x′ =
k∑

i=1

σibi

This is again larger than cTx (which is again a contradiction).

Therefore, if cTx is a maximum, then c and d are orthogonal (or d = ~0).

The next part of the proof relies on the following “Lemma”:

Lemma: Let λ1 ≤ λ2 ≤ . . . ≤ λn, and let σ1, . . . , σn be non-negative so that
∑
σi = 1.

Then show that
λ1 ≤ σ1λ1 + σ2λ2 + · · · + σnλn ≤ λn

Proof (just one way):

σ1λ1 + σ2λ2 + · · · + σnλn ≤ σ1λn + σ2λn + · · · + σnλn = λn

Now, consider

cTx = cTd +
n∑

i=1

σic
Tbi = 0 + σ1c

Tb1 + · · ·σncTbn

From what we just showed,

min
i

{
cTbi

}
≤ cTx ≤ max

i

{
cTbi

}
Therefore, the optimal value occurs at a BFS.

Definition: Adjacent Solutions

Def: For an LP in standard form (A is m×n with rank m), two BFS are said to be adjacent
is they share m− 1 basic variables (only 1 basic variable is different).

For example, BFS using x1, x2, x3 as the BV would be adjacent to one using x1, x2, x4 but
not adjacent to a BFS using BV’s x1, x4, x5.
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Example

Consider the LP:
min z = x1+ x2

s.t. x1 +x2 ≥ 250
2x1 +x2 ≥ 400
x1, x2 ≥ 0

We want to illustrate the points from the proof of the Fundamental Theorem. It is easy to
show that this problem is maximized at (150, 100).

1. Write the problem in standard form and give the vector c.

SOLUTION: Standard form would be given as cTx, such that Ax = b, where

A =

[
1 1 −1 0
2 1 0 −1

]
, x =


x1
x2
e1
e2

 , b =

[
250
400

]
, c =


1
1
0
0


2. Give a description of the directions of unboundedness.

SOLUTION: In the (x1, x2) plane, any vector pointing to the right with any angle
between 0 and π/2 will work. Given x1 and x2, the other two dimensions can be
computed since the vector is in the null space of A:

e1 = x1 + x2
e2 = 2x1 + x2

For example, if we take the direction [1, 1]T in the (x1, x2) plane, the vector d =
[1, 1, 2, 3]T (and this is in the null space of A).

3. In two dimensions, the problem is minimized if x1 = 150, x2 = 100. Find the corre-
sponding 4-dimensional vector x.

SOLUTION: The solution is the intersection between the two lines, so e1 = 0 and e2 = 0,
and x = [150, 100, 0, 0]

4. Continuing with the last question, is cTd = 0? Is that a problem?
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