Examples, Big M Method

1. See the Maple file: BigM_ExampleO1.mw

Here is the LP:

$$\max z = -x_1 + 2x_2$$

$$\text{st} \quad x_1 + x_2 \ge 2$$

$$-x_1 + x_2 \ge 1$$

$$x_2 \le 3$$

Initial tableau using Big-M

	x_1	x_2	e_1	e_2	s_1	a_1	a_2	
		-2						
$\overline{a_1}$	1	1	-1	0	0	1	0	2
a_2	-1	1	0	-1	0	0	1	1
s_1	0	1 1 1	0	0	1	0	0	3

Ending tableau:

And our optimal solution is given as $x_1 = 0$, $x_2 = 3$, with z = 6.

2. See BigM_ExampleO2.mw on the class website.

This is the LP:

Where the initial tableau is given by:

	x_1	x_2	x_3	s_1	e_1	e_2	a_1	a_2	rhs
		-3							
$\overline{s_1}$	1	1	2	1	0	0	0	0	4
a_1	-1	0	1	0	-1	0	1	0	4
a_2	0	1 0 0	1	0	0	-1	0	1	3

Here's the final tableau, through Maple:

	x_1	x_2	x_3	s_1	e_1	e_2	a_1	a_2	rhs
	$-\frac{1}{2} + 2M$	$-\frac{5}{2}+M$	0	$\frac{1}{2} + M$	M	M	0	0	2-3M
$\overline{x_3}$	1/2	1/2	1	1/2	0	0	0	0	2
a_1	-3/2	-1/2	0	-1/2	-1	0	1	0	2
a_2	-1/2	-1/2	0	-1/2	0	-1	0	1	1

Since M is an arbitrarily large positive number, all Row 0 Coefficients are now considered non-negative. Additionally, we failed to remove the artificial variables from the BFS, so therefore, **the LP is infeasible**.

3. See BigM_ExampleO3.mw from the class website. Here is the LP

Construct the tableau, then remove the M's:

And the final tableau:

The artificial variables can now be safely deleted (they are non-basic variables). We see that normally we would go into the Simplex Method with our current BFS, but we are unable to pivot in either column 2 or column 4. The LP is **unbounded**, which is clear if we write the system of equations: We maximize $z = 3 + x_2 + x_4$ such that:

$$\mathbf{x} = \begin{bmatrix} 3 \\ 0 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

so x_2, x_4 can each be increased without bound (and remain feasible).