Goal Programming Example

The Dewright company is considering three new products. Goals and penalties are shown in the table:

	Pr	odı	ıct		
Factor	1	2	3	Goal	Penalty
Profit	12	9	15	≥ 125	5
Employment	5	3	4	= 40	2(+),4(-)
Capital	5	7	8	≤ 55	3

Formulate a system for goal programming.

Let x_1, x_2, x_3 be the prod. rates. Then we will

min
$$z = 5s_1 + 4s_2 + 2e_2 + 3e_3$$

 $12x_1 + 9x_2 + 15x_3 + s_1 - e_1 = 125$
 $5x_1 + 3x_2 + 4x_3 + s_2 - e_2 = 40$
 $5x_1 + 7x_2 + 8x_3 + s_3 - e_3 = 55$

We could easily solve this in LINDO or a spreadsheet. The Maple worksheet is Example 2 online.

$$x_1 = \frac{100}{7}, \quad x_2 = 0, \qquad x_3 = \frac{145}{7}$$

Goal Programming Example

(Exercise 4, 4.16) A company produces two products, where the labor and profit are:

	Prod 1	Prod 2	Target
Labor (hrs)	4	2	32
Profit (\$)	4	2	48
Demand	7	10	

The company incurs a penalty of \$1 for each dollar it falls short of the profit. A \$2 penalty is incurred for each hour of overtime, and a \$1 penalty is incurred for each hour of labor that is not used. A penalty of \$5/unit is assessed for any shortfall in meeting demand.

Formulate an LP to minimize the penalty.

SOLUTION: We minimize:

$$z = s_1 + 2e_1 + s_2 + 5s_3 + 5s_4$$

 $4x_1 + 2x_2 + s_1 - e_1 = 32$ Labor
 $4x_1 + 2x_2 + s_2 - e_2 = 48$ Profit
 $x_1 + s_3 - e_3 = 7$
 $x_2 + s_4 - e_4 = 10$

SOLUTION: We minimize:

$$z = s_1 + 2e_1 + s_2 + 5s_3 + 5s_4$$

 $4x_1 + 2x_2 + s_1 - e_1 = 32$ Labor
 $4x_1 + 2x_2 + s_2 - e_2 = 48$ Profit
 $x_1 + s_3 - e_3 = 7$
 $x_2 + s_4 - e_4 = 10$

In LINDO, we get

$$x_1 = 7$$
, $x_2 = 10$, $e_1 = 16$

SOLUTION: We minimize:

$$z = s_1 + 2e_1 + s_2 + 5s_3 + 5s_4$$

 $4x_1 + 2x_2 + s_1 - e_1 = 32$ Labor
 $4x_1 + 2x_2 + s_2 - e_2 = 48$ Profit
 $x_1 + s_3 - e_3 = 7$
 $x_2 + s_4 - e_4 = 10$

In LINDO, we get

$$x_1 = 7,$$
 $x_2 = 10,$ $e_1 = 16$

reasonable considering heavy penalty on not meeting demand.

Goal Programming

Now we'll try the same problem, except that we set the following goals (in order of importance):

- Goal 1: Avoid underutilization of labor.
- ▶ Goal 2: Meet demand for product 1.
- Goal 3: Meet demand for product 2.
- Goal 4: Do not use any overtime.

We see profit is no longer a constraint.

Setting up the Tableau:

$$4x_1 +2x_2 +s_1 -e_1 = 32 \text{ Labor}$$

 $x_1 +s_2 -e_2 = 7$
 $x_2 +s_3 -e_3 = 10$

Goals:

$$P_1 s_1 \gg P_2 s_2 \gg P_3 s_3 \gg P_4 e_1$$

From our equations, we get the tableau (max):

	- x ₁	<i>X</i> ₂	s_1	<i>s</i> ₂	s ₃	e_1	e_2	e_3	rhs
	0	0	P_1	0	0	0	0	0	0
İ	0	0	0	P_2	0	0	0	0	0
	0	0	0	0	P_3	0	0	0	0
	0	0	0	0	0	P_4	0	0	0
	4	2	1	0	0	-1	0	0	32
ĺ	1	0	0	1	0	0	-1	0	7
	0	1	0	0	1	0	0	-1	10

Choose a set of variables for the BFS, and row reduce to get columns of the identity matrix.

From our equations, we get the tableau (max):

ſ	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s ₃	e_1	e_2	e_3	rhs
l	0	0	P_1	0	0	0	0	0	0
İ	0	0	0	P_2	0	0	0	0	0
l	0	0	0	0	P_3	0	0	0	0
l	0	0	0	0	0	P_4	0	0	0
	4	2	1	0	0	-1	0	0	32
	1	0	0	1	0	0	-1	0	7
	0	1	0	0	1	0	0	-1	10

Choose a set of variables for the BFS, and row reduce to get columns of the identity matrix.

Current basic variables: $s_1 = 32, s_2 = 7, s_3 = 10$.

Clearing those columns, here is the result:

	- x ₁	<i>X</i> ₂	s_1	s ₂	s ₃	e_1	e_2	e_3	rhs
	$-4P_{1}$	$-2P_{1}$	0	0	0	P_1			$-32P_{1}$
	$-P_2$	0	0	0	0	0	P_2	0	$-7P_{2}$
l	0	$-P_3$	0	0	0	0	0	P_3	$-10P_{3}$
	0	0	0	0	0	P_4	0	0	0
	4	2	1	0	0	-1	0	0	32
	1	0	0	1	0	0	-1	0	7
	_ 0	1	0	0	1	0	0	-1	10]

Using the first row as Row 0, pivot in column 1, row 6 (use the ratio test).

This will bring in x_1 as BV, and move s_2 to NBV.

$\int x_1$	<i>x</i> ₂	s_1	<i>s</i> ₂	s ₃	e_1	e_2	e_3	rhs
0	$-2P_{1}$	0	$4P_1$	0	P_1	$-4P_{1}$	0	$-4P_1$
0	0	0	P_2	0	0	0	0	0
0	$-P_3$	0	0	0	0	0	P_3	$-10P_{3}$
0	0	0	0	0	P_4	0	0	0
0	2	1	-4	0	-1	4	0	4
1	0	0	1	0	0	-1	0	7
0	1	0	0	1	0	0	-1	10]

Now bring in e_2 as basic, and move s_1 to NBV. That is, pivot in Column 7, Row 5.

_	_								
l	x_1	x_2	s_1	s ₂	<i>S</i> ₃	e_1	e_2	e_3	rhs
l	0	0	P_1	0	0	0	0	0	0
l	0	0	0	P_2	0	0	0	0	0
l	0	$-P_3$	0	0	0	0	0	P_3	$-10P_{3}$
l	0	0	0	0	0	P_4	0	0	0
l	0	1/2	1/4	-1	0	-1/4	1	0	1
l	1	1/2	1/4	0	0	-1/4	0	0	8
	0	1	0	0	1	0	0	-1	10]

Goals 1 and 2 now complete. Proceed to Priority 3. Bring in x_2 as basic, take e_2 back out again.

	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>S</i> ₃		e_2	e_3	rhs]	
	0	0	P_1	0	0	0	0	0	0	
	0	0	0	P_2	0	0	0	0	0	
	0	0	$P_{3}/2$	$-2P_{3}$	0	$-P_{3}/2$	$2P_{3}$	P_3	$-8P_3$	
l	0	0	0	0	0	P_4	0	0	0	
	0	1	1/2	-2	0	-1/2	2	0	2	
١	1	0	0	1	0	0	-1	0	7	
	0	0	-1/2	2	1	1/2	-2	-1	8]	

We can't bring in s_2 without messing up P_2 . Are we done?

	<i>x</i> ₁	<i>X</i> ₂	s_1	<i>s</i> ₂	s ₃	e_1	e_2	e_3	rhs
	0	0	P_1	0	0	0	0	0	0
	0	0	0	P_2	0	0	0	0	0
	0	0	$P_{3}/2$	$-2P_{3}$	0	$-P_{3}/2$	$2P_{3}$	P_3	$-8P_3$
l	0	0	0	0	0	P_4	0	0	0
	0	1	1/2	-2	0	-1/2	2	0	2
١	1	0	0	1	0	0	-1	0	7
	0	0	-1/2	2	1	1/2	-2	-1	8]

We can't bring in s_2 without messing up P_2 . Are we done? Bring in e_1 , take out s_3 .

ſ	x_1	x_2	s_1	<i>s</i> ₂	<i>s</i> ₃	e_1	e_2	e_3	rhs
l	0	0	P_1	0	0	0	0	0	0
İ	0	0	0	P_2	0	0	0	0	0
l	0	0	0	0	P_3	0	0	0	0
l	0	0	P_4	$-4P_{4}$	$-2P_{4}$	0	$4P_{4}$	$2P_{4}$	$-16P_{4}$
ļ	0	1	0	0	1	0	0	-1	10
l	1	0	0	1	0	0	-1	0	7
	0	0	-1	4	2	1	-4	-2	16

Optimal?

Γ	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	e_1	e_2	e_3	rhs
-	0	0	P_1	0	0	0	0	0	0
İ	0	0	0	P_2	0	0	0	0	0
	0	0	0	0	P_3	0	0	0	0
l	0	0	P_4	$-4P_{4}$	$-2P_{4}$	0	$4P_{4}$	$2P_{4}$	$-16P_{4}$
-	0	1	0	0	1	0	0	-1	10
l	1	0	0	1	0	0	-1	0	7
L	0	0	-1	4	2	1	-4	-2	16]

Optimal?

$$x_1 = 7, \qquad x_2 = 10, \qquad e_1 = 16$$

Solving in LINDO

Let's look at solving the goal programming LP in LINDO. We first ask LINDO to min $z = s_1$ such that

$$4x_1 + 2x_2 + s_1 - e_1 = 32$$

$$x_1 + s_2 - e_2 = 7$$

$$x_2 + s_3 - e_3 = 10$$

Type the following into LINDO, then "Solve":

```
min s1
st
4x1+2x2+s1-e1=32
x1+s2-e2=7
x2+s3-e3=10
end
```

LINDO returns: $x_1 = 7$ and $x_2 = 2$.

Now we ask LINDO to solve the following system (just make the changes "live")

```
min s2
st
4x1+2x2+s1-e1=32
x1+s2-e2=7
x2+s3-e3=10
s1=0
end
```

LINDO returns: $x_1 = 8$ and $x_2 = 0$.

Continuing, we have:

```
min s3
st
4x1+2x2+s1-e1=32
x1+s2-e2=7
x2+s3-e3=10
s1=0
s2=0
end
```

LINDO returns: $x_1 = 7$ and $x_2 = 10$.

Finally, we ask LINDO:

```
min e1
st
4x1+2x2+s1-e1=32
x1+s2-e2=7
x2+s3-e3=10
s1=0
s2=0
s3=0
end
```

LINDO basically returns the same answer:

$$x_1 = 7$$
, $x_2 = 10$, $e_1 = 16$

(So we're not able to get e_1 to zero).