We're buying advertising time for "HIW" and "HIM".

Let x_1 , x_2 be the number of ads purchased during a comedy show, and a football game respectively. Comedy ads are \$50,000 and football ads are \$100,000. For the target demos, we want to solve the following LP:

$$egin{array}{ll} \mathsf{min}\,z &=& 50x_1 + 100x_2 \ \mathsf{st} & 7x_1 + 2x_2 \geq 28 \ 2x_1 + 12x_2 \geq 24 \ x_1, x_2 \geq 0 \end{array} \qquad egin{array}{ll} \mathsf{HIW})$$

where the unit of money is \$1,000 and the unit of people is in millions.

DRHundley (WHI) Math 339 10/16/2013 1 / 17

x_1	<i>X</i> ₂	e_1	e_2	rhs			x_2	e_1	e_2	rhs
50	100	0	0	0		0	0	5	$\frac{15}{2}$	-320
	2				\Rightarrow	1	0	$-\frac{3}{20}$	$\frac{\overline{1}}{40}$	18 5 7
2	12	0	-1	24		0	1	$\frac{1}{40}$	$-\frac{7}{80}$	$\frac{7}{5}$

x_1	<i>X</i> ₂	e_1	e_2	rhs		x_1	x_2	e_1	e_2	rhs
50	100	0	0	0		0	0	5	$\frac{15}{2}$	-320
	2				\Rightarrow	1	0	$-\frac{3}{20}$	$\frac{\overline{1}}{40}$	18 5 7
2	12	0	-1	24		0	1	$\frac{1}{40}$	$-\frac{7}{80}$	$\frac{5}{5}$

so that the optimal solution is: $(x_1, x_2) = (3.6, 1.4)$.

DRHundley (WHI)

x_1	<i>X</i> ₂	e_1	e_2	rhs		x_1	x_2	e_1	e_2	rhs
50	100	0	0	0		0	0	5	$\frac{15}{2}$	-320
7	2	-1	0	28	\Rightarrow	1	0	$-\frac{3}{20}$	$\frac{\overline{1}}{40}$	18 5 7
2	12	0	-1	24		0	1	$\frac{1}{40}$	$-\frac{7}{80}$	7 5

so that the optimal solution is: $(x_1, x_2) = (3.6, 1.4)$.

This is the current **basis**- (x_1, x_2) .

DRHundley (WHI)

x_1	<i>X</i> ₂	e_1	e_2	rhs						rhs
50	100	0	0	0	\rightarrow	0	0	5	$\frac{15}{2}$	-320
	2				\rightarrow	1	0	$-\frac{3}{20}$	$\frac{\overline{1}}{40}$	18 5
2	12	0	-1	24		0	1	$\frac{1}{40}$	$-\frac{7}{80}$	18 5 7 5

so that the optimal solution is: $(x_1, x_2) = (3.6, 1.4)$.

This is the current **basis**- (x_1, x_2) .

On the next page, the solution is done graphically.

DRHundley (WHI) Math 339 10/16/2013 2 / 17

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ かへぐ

x_1	<i>x</i> ₂	e_1	e_2	rhs		x_1	x_2	e_1	e_2	rhs
50	100	0	0	0			100			
7	2	-1	0	28	\Rightarrow	7	2	-1	0	28
2	12	0	-1	24		2	12	0	-1	24

Isocost line: $C_1x_1 + 100x_2 = k$, so the slope is

	<i>x</i> ₂					x_1	<i>x</i> ₂	e_1	e_2	rhs
	100				\rightarrow		100			
7	2	-1	0	28	\rightarrow	7	2	-1	0	28
2	12	0	-1	24		2	12	0	-1	24

Isocost line: $C_1x_1 + 100x_2 = k$, so the slope is $-C_1/100$.

DRHundley (WHI) Math 339 10/16/2013 4 / 17

Isocost line: $C_1x_1 + 100x_2 = k$, so the slope is $-C_1/100$.

Therefore, the current basis stays optimal if:

$$-\frac{7}{2} < -\frac{C_1}{100} < -\frac{1}{6} \quad \Rightarrow \quad \frac{50}{3} < C_1 < 350$$

DRHundley (WHI)

	<i>X</i> 2					x_1	<i>x</i> ₂	e_1	e_2	rhs
50	100	0	0	0		50	C_2	0 -1	0	0
7	2	-1	0	28	→ -	7	2	-1	0	28
2	12	0	-1	24		2	12	0	-1	24

Isocost line: $50x_1 + C_2x_2 = k$, so the slope is

Isocost line: $50x_1 + C_2x_2 = k$, so the slope is $-50/C_2$.

Therefore, the current basis stays optimal if:

$$-\frac{7}{2} < -\frac{50}{C_2} < -\frac{1}{6} \quad \Rightarrow \quad \Rightarrow \quad \frac{100}{7} \le C_2 \le 300$$

What happens if we can change the RHS of constraint 1? Consider the graph first, and change 28 to b_1 :

DRHundley (WHI)

What happens if we can change the RHS of constraint 1? Consider the graph first, and change 28 to b_1 :

Note that the numerical value of the solution changes-

DRHundley (WHI) Math 339 10/16/2013 6 / 17

What happens if we can change the RHS of constraint 1? Consider the graph first, and change 28 to b_1 :

Note that the numerical value of the solution changes-Does the *basis* change? For what values of b_1 ?

4 D > 4 B > 4 B > 4 B > 9 Q P

Current basis is optimal if E remains at the optimum. As b_1 decreases, point E slides into point D. The b_1 value there is

$$7(0) + 2(2) = 4 \Rightarrow b_1 > 4$$

Similarly, if b_1 moves up, then E slides into C. This occurs when

$$7(12) + 2(0) = 84 \Rightarrow b_1 < 84$$

Or, if $b_1 = 28 + \Delta_1$, then we could say that

$$4 < 28 + \Delta_1 < 84 \quad \Rightarrow \quad -24 < \Delta_1 < 56$$

DRHundley (WHI) Math 339 10/16/2013 7 / 17

We solve for the point of intersection of the system below using Cramer's Rule. Using the current basis, x_1 and x_2 are basic and e_1 , e_2 are set to zero.

$$7x_1 + 2x_2 = 28 + \Delta_1$$

 $2x_1 + 12x_2 = 24$

$$x_{1} = \frac{\begin{vmatrix} 28 + \Delta_{1} & 2 \\ 24 & 12 \end{vmatrix}}{\begin{vmatrix} 7 & 2 \\ 2 & 12 \end{vmatrix}} = \frac{336 + 12\Delta_{1} - 48}{7 \cdot 12 - 4} = 3.6 + 0.15\Delta_{1}$$

$$x_2 = \frac{\begin{vmatrix} 7 & 28 + \Delta_1 \\ 2 & 24 \end{vmatrix}}{\begin{vmatrix} 7 & 2 \\ 2 & 12 \end{vmatrix}} = \frac{168 - 56 - 2\Delta_1}{7 \cdot 12 - 4} = 1.4 - 0.025\Delta_1$$

◆ロ → ◆団 → ◆ 트 → ◆ 트 → りへの

Similarly, for the HIM constraint, $2x_1 + 12x_2 = b_2$:

• As b_2 increases, point E slides toward B(0, 14).

$$2(0) + 12(14) = b_2 \Rightarrow b_2 = 168$$

• As b_2 decreases, point E slides toward A(4,0).

$$2(4) + 12(0) = b_2 \Rightarrow b_2 = 8$$

Therefore,

$$8 \le b_2 \le 168$$

So, in terms of Δ_2 , we could compute the range directly:

$$8 \le 24 + \Delta_2 \le 168 \quad \Rightarrow \quad -16 \le \Delta_2 \le 144$$

DRHundley (WHI)

And for the point of intersection between the constraints (note the basis)

$$7x_1 + 2x_2 = 28$$

 $2x_1 + 12x_2 = 24 + \Delta_2$

$$x_1 = \frac{\begin{vmatrix} 28 & 2 \\ 24 + \Delta_2 & 12 \end{vmatrix}}{\begin{vmatrix} 7 & 2 \\ 2 & 12 \end{vmatrix}} = \frac{336 - 48 - 2\Delta_2}{80} = 3.6 - 0.025\Delta_2$$

And

$$x_2 = \frac{\begin{vmatrix} 7 & 28 \\ 2 & 24 + \Delta_2 \end{vmatrix}}{\begin{vmatrix} 7 & 2 \\ 2 & 12 \end{vmatrix}} = \frac{168 - 56 + 7\Delta_2}{80} = 1.4 + 0.0875\Delta_2$$

Definition: Shadow Price

The shadow price (of a constraint) is the amount by which the value of the objective function *is improved* (increased in a maximum, decreased in a minimum) when the RHS of the constraint is *increased by 1 unit*. This is done *under the assumption that the current basis is unchanged*.

DRHundley (WHI) Math 339 10/16/2013 11 / 17

Example: Find the Shadow Prices

For HIW, if the RHS is $28 + \Delta$, then we solve the system below, which we already did:

$$7x_1 + 2x_2 = 28 + \Delta$$

 $2x_1 + 12x_2 = 24$ $\Rightarrow x_1 = 3.6 + 0.15\Delta, x_2 = 1.4 - 0.025\Delta$

Substitute these into the objective function:

$$(\min)z = 50(3.6 + 0.15\Delta) + 100(1.4 - 0.025\Delta) = 320 + 5\Delta$$

What is the shadow price for HIW?

DRHundley (WHI) Math 339 10/16/2013 12 / 17

Example: Find the Shadow Prices

For HIW, if the RHS is $28 + \Delta$, then we solve the system below, which we already did:

$$7x_1 + 2x_2 = 28 + \Delta$$

 $2x_1 + 12x_2 = 24$ $\Rightarrow x_1 = 3.6 + 0.15\Delta, x_2 = 1.4 - 0.025\Delta$

Substitute these into the objective function:

$$(\min)z = 50(3.6 + 0.15\Delta) + 100(1.4 - 0.025\Delta) = 320 + 5\Delta$$

What is the shadow price for HIW?

The shadow price is -5 (this is a minimization problem)

DRHundley (WHI) Math 339 10/16/2013 12 / 17

For HIM, if the RHS is $24 + \Delta$, then we solve the system below:

$$7x_1 + 2x_2 = 28$$

 $2x_1 + 12x_2 = 24 + \Delta$ $\Rightarrow x_1 = 3.6 - 0.025\Delta, x_2 = 1.4 + 0.0875\Delta$

Substitute these into the objective function:

$$(\min)z = 50(3.6 - 0.025\Delta) + 100(1.4 + 0.0875\Delta) = 320 + 7.5\Delta$$

DRHundley (WHI) Math 339 10/16/2013 13 / 17

For HIM, if the RHS is $24 + \Delta$, then we solve the system below:

$$7x_1 + 2x_2 = 28$$

 $2x_1 + 12x_2 = 24 + \Delta$ $\Rightarrow x_1 = 3.6 - 0.025\Delta, x_2 = 1.4 + 0.0875\Delta$

Substitute these into the objective function:

$$(\min)z = 50(3.6 - 0.025\Delta) + 100(1.4 + 0.0875\Delta) = 320 + 7.5\Delta$$

The shadow price is -7.5.

DRHundley (WHI) Math 339 10/16/2013 13 / 17

Extra Example:

If 26 HIW exposures are required (and other parameters remain the same), determine the new solution and the new value of z.

DRHundley (WHI) Math 339 10/16/2013 14 / 17

Extra Example:

If 26 HIW exposures are required (and other parameters remain the same), determine the new solution and the new value of z.

SOLUTION: Just set $\Delta=-2$ (which is in the allowable range). Then the optimal solution changes slightly:

$$x_1 = 3.6 + 0.15(-2) = 3.30$$
 $x_2 = 1.4 - 0.025(-2) = 1.45$

and
$$z = 320 + 5(-2) = 310$$
 (double-check: $50(3.3) + 100(1.45) = 310$)

DRHundley (WHI) Math 339 10/16/2013 14 / 17

Solving this problem in LINDO: Choose "yes" when LINDO asks you if you want to do sensitivity analysis:

st (HIW) 7x1+2x2>=28 (HIM) 2x1+12x2>=24

min 50x1+100x2

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

1) 320.0000

REDUCED CUST	VALUE	VARIABLE
0.000000	3.600000	X1
0.000000	1.400000	Х2

ROW	SLACK OR SURPLUS	DUAL PRICES
(HIW)	0.000000	-5.000000
(MIM)	0.00000	-7.500000

	_	
NO. ITERATIONS=	2	

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
X1	50.000000	300.000000	33.333332
X2	100.000000	200.000000	85.714287

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
(HIW	28.000000	56.000000	23.999998
(HTM)	24.000000	144.000000	16.000000

◆ロ → ◆昼 → ◆ 恵 → ● ・ 今 ○ ○