Extra Worked Example: Full Sensitivity Analysis

A factory can produce 4 products. Each product must be processed in each of two workshops. The processing times and profit margins for each of the four products is shown.

	1	2	3	4
Workshop 1		4	8	6
Workshop 2	6	2	5	8
Profit	4	6	10	9

If we have 400 hours of labor available in each workshop, the following LP can be used:

The initial and final tableaux:

- 1. Sensitivity Analysis on the NBVs.
 - x_1 : Change 4 to $4 + \Delta$. Discussion: This changes only c_1 . In this case,

$$\hat{c}_1 = -(\mathbf{c}_1^T + \Delta) + (\mathbf{c}_B^T B^{-1} A)_1 = (-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A)_1 - \Delta = \frac{1}{2} - \Delta$$

Therefore, Δ may increase only to 1/2, and may decrease to any amount.

• x_3 : Change 10 to $10 + \Delta$. Discussion: This changes only c_3 . In this case,

$$\hat{c}_3 = -(\mathbf{c}_3^T + \Delta) + (\mathbf{c}_B^T B^{-1} A)_3 = (-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A)_3 - \Delta = 2 - \Delta$$

Therefore, Δ may increase only to 2, and may decrease to any amount.

• x_4 : Change 9 to 9 + Δ . Discussion: This changes only c_4 . In this case,

$$\hat{c}_4 = -(\mathbf{c}_4^T + \Delta) + (\mathbf{c}_B^T B^{-1} A)_4 = (-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A)_4 - \Delta = -\Delta$$

Therefore, Δ must be less than 0, and may decrease to any amount.

• We could also ask change the value of s_1 (in z). By the same reasoning of the previous variables, we would get $\frac{3}{2} - \Delta$.

2. Sensitivity of BVs.

• Change x_2 from 6 to $6 + \Delta$.

Discussion: This changes \mathbf{c} and \mathbf{c}_B :

$$-(\mathbf{c}^T + \Delta \vec{e}_2) + (\mathbf{c}_B + \Delta \vec{e}_1)^T B^{-1} A =$$
$$(-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A) - \Delta \vec{e}_2 + \Delta [1, 0] B^{-1} A$$

The first expression is the original final Row 0. The last expression is Δ times the first row of the final tableau. Writing this as a sum of three row vectors:

We want all four non-zero expressions to be non-negative. Take the intersection of the four intervals, and we should see in this case that $\Delta \geq 0$ will satisfy all four.

• Change s_2 from 0 to Δ .

Discussion: This changes \mathbf{c} and \mathbf{c}_B :

$$-(\mathbf{c}^T + \Delta \vec{e}_6) + (\mathbf{c}_B + \Delta \vec{e}_2)^T B^{-1} A =$$
$$(-\mathbf{c}^T + \mathbf{c}_B^T B^{-1} A) - \Delta \vec{e}_6 + \Delta [0, 1] B^{-1} A$$

The first expression is the original final Row 0. The last expression is Δ times the second row of the final tableau. Writing this as a sum of three row vectors:

We want all four non-zero expressions to be non-negative. Take the intersection of the four intervals, and we should see:

$$0 < \Delta < 3$$

- 3. Changes in the RHS and the Shadow Prices.
 - Change in the first constraint: **b** changes to $\mathbf{b} + \Delta \vec{e}_1$, so the RHS changes to:

$$B^{-1}(\mathbf{b} + \Delta \vec{e_1}) = B^{-1}\mathbf{b} + \Delta B_1^{-1}$$

where B_1^{-1} is the first column of B^{-1} . Using our numbers, we get that the RHS changes to:

$$\begin{bmatrix} 100 \\ 200 \end{bmatrix} + \Delta \begin{bmatrix} 1/4 \\ -1/2 \end{bmatrix} \quad \Rightarrow \quad z = 6(100 + \Delta/4) = 600 + \frac{3}{2}\Delta$$

The shadow price for the first constraint is 3/2. We can also compute bounds on Δ so that the new RHS stays non-negative.

• Change in the second constraint. Using a similar computation, we get:

$$B^{-1}\mathbf{b} + \Delta B_2^{-1} = \begin{bmatrix} 100\\200 \end{bmatrix} + \Delta \begin{bmatrix} 0\\1 \end{bmatrix}$$

so that z=600. The shadow price is 0. We can also compute bounds on Δ so that the new RHS stays non-negative.

NOTE: It makes sense that the shadow price is zero- In the optimal tableau, if $s_2 = 200$, then we have an extra 200 hours of labor available. Increasing that by 1 does nothing to z.